Regulatory feedback loop between circ-EIF4A3 and EIF4A3 Enhances autophagy and growth in colorectal cancer cells.

Transl Oncol

Hebei Key Laboratory of Molecular Oncology, Tangshan 063001, Hebei, China; The Cancer Institute, Tangshan People's Hospital, Tangshan 063001, Hebei, China; Tangshan Key Laboratory of Cancer Prevention and Treatment, Tangshan 063001, Hebei, China. Electronic address:

Published: August 2024

AI Article Synopsis

  • Recent studies show that circular RNAs (circRNAs) play an important role in the growth of colorectal cancer (CRC).
  • A protein called EIF4A3 helps create these circRNAs and helps CRC cells grow by interacting with circEIF4A3.
  • The study found that circEIF4A3 works like a helper for EIF4A3 and helps cells survive by promoting a process called autophagy, which is important for cell health.

Article Abstract

Recent studies indicate that circular RNAs (circRNAs) are crucial in the progression of colorectal cancer (CRC). Eukaryotic translation initiation factor 4A3 (EIF4A3) has been identified as a promoter of circRNA production. The biological roles and mechanisms of EIF4A3-derived circRNA (circEIF4A3) in CRC cell autophagy remain poorly understood. This study explores the effects of circEIF4A3 on CRC cell growth and autophagy, aiming to elucidate the underlying molecular mechanisms. We discovered that EIF4A3 and circEIF4A3 synergistically enhance CRC cell growth. CircEIF4A3 sequesters miR-3126-5p, consequently upregulating EIF4A3. Further, circEIF4A3 increases EIF4A3 expression, which promotes autophagy by stabilizing ATG5 mRNA and enhances ATG7 protein stability through the stabilization of USP14 mRNA, a deubiquitinating enzyme. Upregulation of ATG5 and ATG7 counteracts the growth-inhibitory effects of EIF4A3 knockdown on CRC cells. Moreover, our findings demonstrate that EIF4A3 induces the formation of circEIF4A3 in CRC cells. In conclusion, a positive feedback loop between circEIF4A3 and EIF4A3 supports CRC cell growth by facilitating autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153236PMC
http://dx.doi.org/10.1016/j.tranon.2024.101996DOI Listing

Publication Analysis

Top Keywords

crc cell
16
circeif4a3 crc
12
cell growth
12
feedback loop
8
eif4a3
8
colorectal cancer
8
eif4a3 circeif4a3
8
crc cells
8
crc
7
circeif4a3
7

Similar Publications

Atractylenolide I (ATL-I) can interfere with Colorectal cancer (CRC) cell proliferation by changing apoptosis, glucose metabolism and other behaviors, making it an effective drug for inhibiting CRC tumor growth. In this paper, we investigated the interactions between ATL-I and Keratin 7 (KRT7), a CRC-specific marker, to determine the potential pathways by which ATL-I inhibits CRC development. The KRT7 expression level in CRC was predicted online using the GEPIA website and then validated.

View Article and Find Full Text PDF

STAT3-related lncRNAs in colorectal cancer progression; Special focus on immune cell's evasion.

Pathol Res Pract

January 2025

Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.

Colorectal cancer (CRC) is globally ranked as the third leading cause of cancer-related deaths in both men and women. There is an urgent need for novel biomarkers to facilitate early diagnosis and enhance patient care, thereby improving treatment response and reducing mortality rates. Signal transducer and activator of transcription 3 (STAT3) is essential for controlling the anti-tumor immune response since it is a hub for several oncogenic signaling pathways.

View Article and Find Full Text PDF

Neutrophil and Colorectal Cancer.

Int J Mol Sci

December 2024

Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.

Colorectal cancer (CRC) is often associated with metastasis and recurrence and is the leading cause of cancer-related mortality. In the progression of CRC, recent studies have highlighted the critical role of neutrophils, particularly tumor-associated neutrophils (TANs). TANs have both tumor-promoting and tumor-suppressing activities, contributing to metastasis, immunosuppression, angiogenesis, and epithelial-to-mesenchymal transition.

View Article and Find Full Text PDF

Given the poor prognosis of metastatic pancreatic adenocarcinoma (mPDAC), closer disease monitoring through liquid biopsy, most frequently based on serial measurements of cell-free mutated ( cfDNA), has become a highly active research focus, aimed at improving patients' long-term outcomes. However, most of the available data show only a limited predictive and prognostic value of single-parameter-based methods. We hypothesized that a combined longitudinal analysis of cfDNA and novel protein biomarkers could improve risk stratification and molecular monitoring of patients with mPDAC.

View Article and Find Full Text PDF

Inosine Prevents Colorectal Cancer Progression by Inducing M1 Phenotypic Polarization of Macrophages.

Molecules

December 2024

Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy, Dali University, Dali 671000, China.

Inosine (IS) is a naturally occurring metabolite of adenosine with potent immunomodulatory effects. This study investigates the immunomodulatory effects of inosine, particularly its ability to inhibit the development of colorectal cancer (CRC) cells CT26 through modulation of macrophage phenotypes. Aside from the already reported effects of inosine on T cells, in this study, in vitro experiments revealed that inosine could modulate macrophage phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!