Colorectal cancer (CRC) is the third most diagnosed and highly fatal malignancy, presenting serious health concerns worldwide. The search for an effective cure for CRC is challenging and poses a serious concern. Kaempferol is a potent anti-cancerous bioactive compound often suggested for treating various cancers, including CRC. However, its underlying molecular mechanism against CRC remains unclear. The present study delves into kaempferol's molecular pathways and underlying molecular mechanisms against CRC targets. The target protein-coding genes for kaempferol were retrieved, and the CRC-associated genes were curated. Twelve common targets with a disease specificity index of > 0.6 were validated for their protein expression at different stages of CRC. Over-expressed USP1, SETD7, POLH, TDP1 and RACGAP1 were selected for further studies. The binding affinities of kaempferol to the corresponding proteins were evaluated using molecular docking and Molecular Dynamics (MD) simulations. SETD7 exhibited the highest binding affinity with the lowest binding energy (- 8.06 kcal/mol). Additionally, the MD simulation, and MM-PBSA conferred SETD7-kaempferol complex had the least root-mean-square deviation with lower interaction energy and higher conformational stability. The protein-protein interaction of SETD7 constructed revealed direct interactors, namely, DNMT1, FOXO1, FOXO3, FOXO4, H3-3B, H3-4, H3C12, H3C13, SETD7, SIRT1 and TP53, have a potential role in cancer progression through FOXO signalling. In summary, our study revealed kaempferol's multi-target and synergistic effect on multiple CRC targets and its underlying mechanisms. Finally, the study recommends in-vitro and in-vivo trials for validation of anti-cancerous drugs for CRC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11030-024-10890-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!