A reliable nanotechnological sensing strategy, based on an S,N-co-doped graphene quantum dot (GQD) platform, has been developed to distinctly detect two key variants of vitamin D, specifically the free (VD) and the nanoencapsulated form (VDMs). For this purpose, food-grade vitamin D micelles were self-assembled using a low-energy procedure (droplet size: 49.6 nm, polydispersity index: 0.34, ζ-potential: -33 mV, encapsulation efficiency: 90 %) with an innovative surfactant mixture (Tween 60 and quillaja saponin). Herein, four fluorescent nanoprobes were also synthesized and thoroughly characterized: S,N-co-doped GQDs, α-cyclodextrin-GQDs, β-cyclodextrin-GQDs, and γ-cyclodextrin-GQDs. The goal was to achieve a selective dual sensing strategy for free VD and VDMs by exploiting their distinctive quenching behaviors. Thus, the four nanosensors allowed the individual sensing of both targets to be performed (except α-CD-GQD for VDMs), but S,N-GQDs were finally selected due to selectivity and sensitivity (quantum yield, QY= 0.76) criteria. This choice led to a photoinduced electron transfer (PET) mechanism associated with static quenching, where differentiation was evidenced through a displayed 13-nm hypsochromic (blue) shift when interacting with VDMs. The reliability of this dual approach was demonstrated through an extensive evaluation of analytical performance characteristics. The feasibility and accuracy were proven in commercial food preparations and nutritional supplements containing declared nanoencapsulated and raw VD, whose results were validated by a paired Student's t-test comparison with a UV-Vis method. To the best of our knowledge, this represents the first non-destructive analytical approach addressing the groundbreaking foodomic trend to distinctly detect different bioactive forms of vitamin D, while also preserving their native nanostructures as a chemical challenge, thus providing reliable information about their final stability and bioavailability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-024-05344-3 | DOI Listing |
Life Sci Space Res (Amst)
February 2025
School of Biosciences and Technology, VIT, Vellore 632014, India. Electronic address:
Microbial biofilms are universal. The intricate tapestry of biofilms has remarkable implications for the environment, health, and industrial processes. The field of space microbiology is actively investigating the effects of microgravity on microbes, and discoveries are constantly being made.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China. Electronic address:
The presence of lead ion (Pb) in groundwater poses a serious risk to human health, even at low levels. Therefore, it is essential to develop a new strategy for both selective detection and effective removal of Pb in groundwater, which has been rarely reported. Here, we developed a multi-functional chitosan-based fluorescent sensing membrane (CM-L/CG) by using a casting method for the sensitive/selective detection and removal of Pb in groundwater.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Chemistry and Environment, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.
Microplastic pollution, a major global environmental issue, is gaining heightened attention worldwide. Marginal seas are particularly susceptible to microplastic contamination, yet data on microplastics in marine sediments remain scarce, especially in the Beibu Gulf. This study presents a large-scale investigation of microplastics in the surface sediments of the Beibu Gulf to deciphering their distribution, sources and risk to marginal seas ecosystems.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:
Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
The first shikimic acid derived fluorescent carbon dots (SACNDs-FITC) for multi-modal detection and simultaneous removal of Hg is revealed. The fluorescence of SACNDs-FITC centered at 520 nm can be selectively quenched by Hg, while the emission centered at 420 nm remains constant which can be used for self-calibration. Naked-eye distinguishable color change from yellow to colourless under daylight and from green to blue under UV light could be observed for SACNDs-FITC in the real-time detection of Hg.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!