Cannabis sativa L. has been the most discussed medicinal plant in recent years. In particular, the dynamic shift from a formerly illicit and tightly controlled substance to a plant recognized for both medicinal and recreational purposes has brought C. sativa into the global spotlight. Due to the ongoing international legalization processes, fast and convenient analytical methods for the quality control of C. sativa flowers for medicinal and recreational purposes are of tremendous interest. In this study, we report the development and validation of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method applying atmospheric pressure chemical ionization (APCI) to fully quantify 16 terpenes and 7 cannabinoids including their acidic forms by a single chromatographic method. The method presented here is unique and simple, as it eliminates the need for derivatization reactions and includes the unconventional analysis of volatile compounds by liquid chromatography. Samples were prepared by a simple and fast ethanolic extraction. Separation was accomplished within 25 min on a reversed-phase C18 column. Method validation was conducted according to international guidelines regarding selectivity, accuracy, precision, robustness, and linearity. Detection was done in multiple reaction monitoring, which allowed the simultaneous quantification of co-eluting analytes applying two selective mass transitions. In addition, due to reproducible in-source decarboxylation, the acidic forms of cannabinoids were reliably quantified using mass transitions of the neutral forms. The accuracy given as the bias was below 15% for all analytes. Matrix effects for cannabinoids were studied by spiking Humulus lupulus extracts with the analytes at varying concentrations. APCI did not show susceptibility toward ion suppression or enhancement. In addition, the recovery effect after spiking was between 80 and 120% for terpenes. Further, 55 authentic C. sativa extracts were fully quantified, and the obtained results for the terpene profiles were compared to state-of-the-art gas chromatography coupled to flame ionization detection. Comparable results were achieved, emphasizing the method's applicability for cannabinoids and terpenes. Further, acquired metabolite patterns for C. sativa samples were studied, identifying a relationship between cannabinoid and terpene patterns, as well as the abundance of myrcene in CBD-dominant C. sativa strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249406 | PMC |
http://dx.doi.org/10.1007/s00216-024-05349-y | DOI Listing |
J Magn Reson Imaging
January 2025
Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China.
Background: Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability.
Purpose: To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity.
Acc Chem Res
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Center for Applied Geoscience, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany.
Aminopolyphosphonates (APPs) are widely used as chelating agents, and their increasing release into the environment has raised concerns due to their transformation into aminomethylphosphonic acid (AMPA) and glyphosate, compounds of controversial environmental impact. This transformation highlights the urgent need for detailed studies under controlled conditions. Despite the availability of various methods for quantifying individual aminopolyphosphonates and aminomonophosphonates, a green, low-cost approach for the simultaneous quantification of APPs and their transformation products in laboratory experiments has been lacking.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Biotechnology and Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkiye.
Centrifugation is crucial for size and density-based sample separation, but low-volume or delicate samples suffer from loss and impurity issues during repeated spins. We introduce the "Spinochip", a novel microfluidic system utilizing centrifugal forces for efficient filling of dead-end microfluidic channels. The Spinochip enables versatile fluid manipulation with a single reservoir for both inlet and outlet functions.
View Article and Find Full Text PDFChina CDC Wkly
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
Introduction: The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment.
Methods: We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!