An innovative electrochemical sensing method is introduced for dihydroxy benzene (DHB) isomers, specifically hydroquinone (HQ) and pyrocatechol (PCC), employing a zinc-oxide/manganese-oxide/reduced-graphene-oxide (ZnO/MnO/rGO) nanocomposite (NC) as an electrode modifier material. Comprehensive characterization confirmed well-dispersed ZnO/MnO nanoparticles on rGO sheets. Electrochemical analysis revealed the ZnO/MnO/rGO-NC-based modified electrode possesses low electrical resistance (126.2 Ω), high electrocatalytic activity, and rapid electron transport, attributed to the synergies between ZnO, MnO and rGO. The modified electrode demonstrated exceptional electrochemical performance in terms of selectivity for the simultaneous detection of HQ and PCC. Differential pulse voltammetry studies validated the proposed sensor's ability to detect HQ and PCC within linear response ranges of 0.01-115 μM and 0.03-60.53 μM, with detection limits of 0.0055 µM and 0.0053 µM, respectively. Practical validation using diverse water samples showcased excellent percent recovery of HQ and PCC using the ZnO/MnO/rGO-based electrochemical sensor, underscoring the sensor's potential for real-world applications in environmental monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-024-06416-yDOI Listing

Publication Analysis

Top Keywords

hydroquinone pyrocatechol
8
modified electrode
8
novel electrochemical
4
electrochemical zno/mno/rgo
4
zno/mno/rgo nanocomposite-based
4
nanocomposite-based catalyst
4
catalyst simultaneous
4
simultaneous determination
4
determination hydroquinone
4
pyrocatechol innovative
4

Similar Publications

Hydroquinone (HQ) and copper ions (Cu) are categorized as environmental pollutants that are severely limited in water. Designing a selective assay for discriminating HQ from its two isomers and the convenient determination of Cu is of great importance. Herein, a Tb-based metal-organic framework (Tb-MOF) and HQ are assembled innovatively into a ratiometric fluorescence nanoprobe to selectively distinguish HQ and subsequent quantitative visual detection of Cu.

View Article and Find Full Text PDF

Michael and Schiff-Base Reactions-Assisted Fluorescence Sensor Based on the MOF Nanosheet Microspheres for the Effective Discrimination and Detection of Hydroquinone and Catechol.

Anal Chem

January 2025

Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China.

A novel sensing platform was constructed for the recognition and identification of dihydroxybenzene isomers based on the MOF-0.02TEA fluorescence sensor with the morphology of nanosheet microspheres through coordination modulation. Based on the sensing principle that the amino group on the MOF-0.

View Article and Find Full Text PDF

The smartphone-assisted sensing platform based on manganese dioxide nanozymes for the specific detection and degradation of hydroquinone.

J Hazard Mater

January 2025

Institute of Environmental Science, Shanxi University, Wucheng No. 92, rd, Taiyuan, Shanxi, PR China. Electronic address:

Hydroquinone (HQ) is a prevalent pollutant in aquatic environments, posing significant risks to ecosystems and human health. Practical methods for the simultaneous detection and degradation of HQ are essential. To address this requirement, a dual-mode detection and degradation strategy has been developed utilizing designed nanozymes (DM) consisting of a porous SiO core and MnO shell.

View Article and Find Full Text PDF

A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).

View Article and Find Full Text PDF

Studies on Square Wave and Cyclic Voltammetric Behavior of 1,2- and 1,4-Dihydroxybenzenes and Their Derivatives in Acetic Acid, Ethyl Acetate and Mixtures of the Two.

Methods Protoc

December 2024

Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Honvéd Street 1, H-7624 Pécs, Hungary.

An electrochemical investigation of 1,2- and 1,4-dihydroxybenzenes was carried out with platinum macro- and microelectrodes using square wave and cyclic voltammetry techniques. Furthermore, the effect of the two solvents-acetic acid and ethyl acetate-was compared. When using square wave voltammetry, signals only appeared at lower frequencies and only when the supporting electrolyte was in excess, as expected due to the relatively low permittivity of the used solvents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!