AI Article Synopsis

  • TTK21 is a small molecule that enhances a specific enzyme's activity crucial for brain function, and when combined with a glucose-derived carbon nanosphere (CSP), it can successfully cross the blood-brain barrier and promote brain cell growth and memory retention.
  • The study shows that CSP-TTK21 can be effectively delivered through oral administration, comparing its effects to traditional intraperitoneal (IP) injection in mice.
  • Findings reveal that oral CSP-TTK21 boosts synaptic strength in the hippocampus and improves motor function and gene expression related to recovery in a spinal injury model, all without toxic effects at high doses.

Article Abstract

TTK21 is a small-molecule activator of p300/creb binding protein (CBP) acetyltransferase activity, which, upon conjugation with a glucose-derived carbon nanosphere (CSP), can efficiently cross the blood-brain barrier and activate histone acetylation in the brain. Its role in adult neurogenesis and retention of long-term spatial memory following intraperitoneal (IP) administration is well established. In this study, we successfully demonstrate that CSP-TTK21 can be effectively administered oral gavage. Using a combination of molecular biology, microscopy, and electrophysiological techniques, we systematically investigate the comparative efficacy of oral administration of CSP and CSP-TTK21 in wild-type mice and evaluate their functional effects in comparison to intraperitoneal (IP) administration. Our findings indicate that CSP-TTK21, when administered orally, induces long-term potentiation in the hippocampus without significantly altering basal synaptic transmission, a response comparable to that achieved through IP injection. Remarkably, in a spinal cord injury model, oral administration of CSP-TTK21 exhibits efficacy equivalent to that of IP administration. Furthermore, our research demonstrates that oral delivery of CSP-TTK21 leads to improvements in motor function, histone acetylation dynamics, and increased expression of regeneration-associated genes (RAGs) in a spinal injury rat model, mirroring the effectiveness of IP administration. Importantly, no toxic and mutagenic effects of CSP-TTK21 are observed at a maximum tolerated dose of 1 g/kg in Sprague-Dawley (SD) rats the oral route. Collectively, these results underscore the potential utility of CSP as an oral drug delivery system, particularly for targeting the neural system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.4c00124DOI Listing

Publication Analysis

Top Keywords

oral administration
12
spinal cord
8
cord injury
8
histone acetylation
8
intraperitoneal administration
8
oral
7
administration
6
csp-ttk21
6
administration specific
4
specific p300/cbp
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!