This research investigates the mechanical behavior and damage evolution in cross-ply basalt fiber composites subjected to different loading modes. A modified Arcan rig for simultaneous acoustic emission (AE) monitoring was designed and manufactured to apply quasi-isotropic shear, combined tensile and shear loading, and pure tensile loading on specimens with a central notch. Digital image correlation (DIC) was applied for high-resolution strain measurements. The measured failure strengths of the bio-composite specimens under different loading angles are presented. The different competing failure mechanisms that contribute to the local reduction in stress concentration are described. Different damage mechanisms trigger elastic waves in the composite, with distinct AE signatures that closely follow the sequence of fracture mechanisms. AE monitoring is employed to capture signals associated with structural damage initiation and progression. The characteristic parameters of AE signals are correlated with crack modes and damage mechanisms. The evolution of AE parameters during the peak load transition is presented, which enables the timely AE detection of the maximum load transition. The combination of DIC and AE monitoring improves understanding of the mechanical response and failure mechanisms in cross-ply basalt fiber composites, offering valuable insights for possible performance monitoring and structural reliability in diverse engineering applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11124863 | PMC |
http://dx.doi.org/10.3390/polym16101331 | DOI Listing |
J Colloid Interface Sci
December 2024
Institute of Corrosion Science and Technology, Guangzhou 510530, China.
With the development of science and technology, there is a great demand for electromagnetic wave absorbing materials for both military and civilian purposes. Among them, carbonyl iron powder (CIP) has attracted a lot of attention due to its mature production system and good electromagnetic wave loss capability. However, the application of CIP is limited due to poor impedance matching, poor corrosion resistance, and poor oxidation resistance.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil Engineering, California State University-Chico, Chico, CA, 95929, USA.
Accurately assessing the low-temperature performance of asphalt materials is important for asphalt pavements in cold regions with large temperature differences. This study investigates the effects of freeze-thaw cycles on the low-temperature performance of basalt fiber-rubber powder composite modified asphalt mixtures (BRMAM). The influence of basalt fibers content on the mechanical properties of asphalt binder was characterized through basic property tests and bending beam rheometer (BBR) assessments.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China.
Hot in-place recycling (HIR) is a sustainable pavement rehabilitation method. However, it is susceptible to aging processes that can compromise its mechanical properties and long-term performance. This study investigates the effects of thermo-oxidative (TO) and ultraviolet (UV) aging on HIR mixtures.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Sichuan Basalt Fiber New Material Research Institute, Guang'an 638500, China.
With the growth in road transport volume and increasingly stringent environmental regulations, the use of lightweight dump trucks not only reduces fuel consumption but also enhances transport efficiency, aligning with the principles of green development. It has now become a key focus in the field of heavy-duty vehicle research. The carriage is located at the rear of the dump truck, connected to the chassis, and serves as the box for carrying cargo, making its strength and durability crucial.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
Usage of continuous fibers as a reinforcement would definitely increase the mechanical properties of 3D-printed materials. The result is a continuous fiber-reinforced composite obtained by additive manufacturing that is not limited to prototyping or non-structural applications. Among the available continuous reinforcing fibers, basalt has not been extensively studied in 3D printing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!