This paper reports on a study investigating the viability and senescence of plum ovules when exposed to different constant temperatures over two years. The research was conducted on the primary and secondary ovules of four plum cultivars: 'Mallard', 'Edda', 'Jubileum', and 'Reeves'. The results show that the first indication of ovule viability loss was callose accumulation, which was detected using the fluorescent dye aniline blue. All cultivars had viable ovules, in different percentages, at 8 °C on the twelfth day after anthesis. However, at higher temperatures, distinct patterns emerged, indicating the adaptability of each cultivar at certain temperatures. The first indication of callose accumulation became visible at the chalazal pole. After anthesis, the ovule's ability to remain viable gradually reduced, followed by callose deposition throughout the ovary. The cultivars 'Edda' and 'Reeves', from 6 days after anthesis onward, in both years, showed the highest percentage of nonviable ovules. In contrast, the 'Jubileum' cultivar demonstrated the highest percentage of viable ovules. The loss of viability of secondary ovules followed a similar pattern to that of the primary ovules in all cultivars. This research provides valuable insights into embryological processes, which can help in the following breeding programs, and to cultivate plum cultivars in Western Norway's climate conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11124911 | PMC |
http://dx.doi.org/10.3390/plants13101359 | DOI Listing |
Nat Commun
January 2025
Sorbonne Université, CNRS, Laboratory of Computational and Quantitative Biology, LCQB, Paris, France.
Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, SI, Italy.
(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal.
Background/objectives: Côa Valley, located in the northeast of Portugal, harbors more than 500 medicinal plant species. Among them, four species stand out due to their traditional uses: Desf. (hemorrhages, urethritis, hepatitis), L.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA.
Spent nuclear fuel (SNF) from the United States' nuclear power plants has been placed in dry cask storage systems since the 1980s. Due to the lack of a clear path for permanent geological repository for SNF, consolidated and long-term storage solutions that use durable concrete and avoid current aging and licensing challenges are becoming indispensable. Ultra-high-performance concrete (UHPC) is a rapidly growing advanced concrete solution with superior mechanical and durability properties that can help realize future resilient nuclear storage facilities.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
The present article focuses on the characterization of the new biocomposites of poly(butylene succinate) (PBS) with fillers of plant origin such as onion peels (OP) and durum wheat bran WB () subjected to composting and artificial aging. The susceptibility to fungal growth, cytotoxicity and antibacterial properties were also examined. The biodegradation of the samples was investigated under normalized conditions simulating an intensive aerobic composting process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!