Disentangling how climate oscillations and geographical events significantly influence plants' genetic architecture and demographic history is a central topic in phytogeography. The deciduous ancient tree species is primarily distributed throughout Northern China and has timber and horticultural value. In the current study, we studied the phylogenic architecture and demographical history of using chloroplast DNA with ecological niche modeling. The results indicated that the populations' genetic differentiation coefficient () value was significantly greater than the haplotype frequency () ( < 0.05), suggesting that had a clear phylogeographical structure. Phylogenetic inference showed that the putative chloroplast haplotypes could be divided into three groups, in which the group Ⅰ was considered to be ancestral. Despite significant genetic differentiation among these groups, gene flow was detected. The common ancestor of all haplotypes was inferred to originate in the middle-late Miocene, followed by the haplotype overwhelming diversification that occurred in the Quaternary. Combined with demography pattern and ecological niche modeling, we speculated that the surrounding areas of Shanxi and Inner Mongolia were potential refugia for during the glacial period in Northern China. Our results illuminated the demography pattern of and provided clues and references for further population genetics investigations of precious tree species distributed in Northern China.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125379PMC
http://dx.doi.org/10.3390/plants13101334DOI Listing

Publication Analysis

Top Keywords

northern china
16
tree species
8
species distributed
8
distributed northern
8
ecological niche
8
niche modeling
8
genetic differentiation
8
demography pattern
8
phylogeography deciduous
4
deciduous tree
4

Similar Publications

Macropinocytosis is a nonselective form of endocytosis that allows cancer cells to largely take up the extracellular fluid and its contents, including nutrients, growth factors, etc. We first elaborate meticulously on the process of macropinocytosis. Only by thoroughly understanding this entire process can we devise targeted strategies against it.

View Article and Find Full Text PDF

The southeastern region of Tibet, which serves as the primary concentration area for marine-type glaciers, has fostered a multitude of glacial lakes that are highly sensitive to global climate change. Glacial lakes play a crucial role in regulating the freshwater ecosystems of the region, but they also pose a significant threat to local infrastructure and populations due to flooding caused by glacial lake outbursts. Currently, a limited amount of research has focused on the monitoring and analysis of glacial lakes in southeastern Tibet.

View Article and Find Full Text PDF

Construction and application of optimized model for mine water inflow prediction based on neural network and ARIMA model.

Sci Rep

January 2025

Key Laboratory of Karst Georesources and Environment, College of Resources and Environmental Engineering, Guizhou University, Ministry of Education, Guizhou University, Guiyang, 550025, China.

Mine water influx is a significant geological hazard during mine development, influenced by various factors such as geological conditions, hydrology, climate, and mining techniques. This phenomenon is characterized by non-linearity and high complexity, leading to frequent water accidents in coal mines. These accidents not only impact coal production quality but also jeopardize the safety of mine staff.

View Article and Find Full Text PDF

The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.

View Article and Find Full Text PDF

Atherosclerosis (AS) is the principal pathological cause of atherosclerotic cardiovascular diseases. Chronic endoplasmic reticulum stress (ERS) has been implicated in AS aetiopathogenesis, but the underlying molecular interactions remain unclear. This study aims to identify the molecular mechanisms of ERS in AS pathogenesis to inform innovative diagnostic approaches and therapeutic targets for managing AS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!