Forage Plant Ecophysiology under Different Stress Conditions.

Plants (Basel)

IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires C1417DSE, Argentina.

Published: May 2024

Forage production often occurs in fragile environments with low fertility and various limitations [...].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11124937PMC
http://dx.doi.org/10.3390/plants13101302DOI Listing

Publication Analysis

Top Keywords

forage plant
4
plant ecophysiology
4
ecophysiology stress
4
stress conditions
4
conditions forage
4
forage production
4
production occurs
4
occurs fragile
4
fragile environments
4
environments low
4

Similar Publications

To understand the interactions of entomopathogenic fungi with forage plants and their influence on associated herbivorous, we evaluated the influence of endophytic colonization with three isolates (CEPAF_ENT 25, CEPAF_ENT 27, and IBCB 425) of Metarhizium anisopliae on Cynodon dactylon, regarding the biological and behavioral aspects of Collaria scenica, an emerging sucking pest in pastoral systems in Brazil. The application of suspensions at the base of plant (drench) was effective in promoting endophytic colonization, especially in the roots, with emphasis on isolates CEPAF_ENT25 and CEPAF_ENT27. Despite the significant reduction in damage caused by C.

View Article and Find Full Text PDF

White clover (Trifolium repens L.) is a high-quality leguminous forage, but its short rooting habit, poor transpiration tolerance, and drought tolerance, have become a key factor restricting its growth and cultivation. 1R-MYB transcription factors (TFs) are a significant subfamily of TFs in plants, playing a vital role in regulating plant responses to drought stress, however, knowledge about the role of 1R-MYB transcription factors in white clover is still limited.

View Article and Find Full Text PDF

Plant nutrient concentrations inform white-tailed deer diet limitations.

J Environ Manage

January 2025

School of Natural Resources, University of Tennessee, 401 Agriculture and Natural Resources Bldg., Knoxville, TN, 37996, USA.

Management of large herbivores often involves increasing availability of forages sufficient in nutrient density to allow animals to meet dietary demands. Nutritional carrying capacity (NCC) models commonly are used to compare plant communities and management strategies, but failure to use the most limiting nutrient could result in overestimating NCC. Moreover, the relationship between limiting nutrients often is not considered, which may influence the utility of NCC models based on a single nutrient, especially when herbivores must simultaneously meet multiple constraints.

View Article and Find Full Text PDF

Endophytes are bacteria that inhabit host plants for most of their life cycle without causing harm. In the study, 15 endophytic bacteria were isolated from 30 forage Sorghum plants and assessed for various plant growth-promoting (PGP) traits, such as phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, ammonia production, siderophore production, gibberellic acid production, Indole-3-acetic acid (IAA) production, and zinc solubilization. One isolate, JJG_Zn, demonstrated multiple PGP activities and was identified as Enterobacter sp.

View Article and Find Full Text PDF

Genomic selection using white clover multi-year-multi-site data showed predicted genetic gains through integrating among-half-sibling-family phenotypic selection and within-family genomic selection were up to 89% greater than half-sibling-family phenotypic selection alone. Genomic selection, an effective breeding tool used widely in plants and animals for improving low-heritability traits, has only recently been applied to forages. We explored the feasibility of implementing genomic selection in white clover (Trifolium repens L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!