Chemodynamic therapy (CDT) employs hydrogen peroxide (HO) within the tumor microenvironment (TME) to initiate the Fenton reaction and catalyze the generation of hydroxyl radicals (·OH) for targeted therapy. Metal ion-based nanomaterials have garnered significant attention as catalysts due to their potent anti-tumor effects. Hypoxia in the TME is often associated with cancer cell development and metastasis, with HIF-1α being a pivotal factor in hypoxia adaptation. In this study, an organic framework called MIL-101 (Fe) was designed and synthesized to facilitate HO-induced ·OH production while also serving as a carrier for the HIF-1α inhibitor Acriflavine (ACF). A biomimetic nanomedical drug delivery system named MIL-101/ACF@CCM was constructed by encapsulating liver cancer cell membranes onto the framework. This delivery system utilized the homologous targeting of tumor cell membranes to transport ACF, inhibiting HIF-1α expression, alleviating tumor hypoxia, and catalyzing ·OH production for effective tumor eradication. Both in vivo and in vitro experiments confirmed that combining ACF with chemotherapy achieved remarkable tumor inhibition by enhancing ROS production and suppressing HIF-1α expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11124917 | PMC |
http://dx.doi.org/10.3390/pharmaceutics16050619 | DOI Listing |
Pharmaceutics
December 2024
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China.
With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs that inhibit antioxidant programs. Considering that dihydroartemisinin (DHA) can cause oxidative damage to protein, DNA, or lipids by producing excessive ROS, while, disulfiram (DSF) can inhibit glutathione (GSH) levels and achieve the therapeutic effect by inhibiting antioxidant system and amplifying oxidative stress, they were co-loaded onto the copper peroxide nanoparticles (CuO) coated with copper tannic acid (Cu-TA), to build a drug delivery system of CuO@Cu-TA@DSF/DHA nanoparticles (CCTDD NPs).
View Article and Find Full Text PDFBiomaterials
December 2024
Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, PR China. Electronic address:
As a promising tumor treatment, chemodynamic therapy (CDT) can specifically catalyze HO into the cytotoxic hydroxyl radical (·OH) via Fenton/Fenton-like reaction. However, the limited HO and weakly acidic pH in tumor microenvironment (TME) would severely restrict the therapeutic efficiency of CDT. Here, a weakly acid activated, HO self-supplied, hyaluronic acid (HA)-functionalized Ce/Cu bimetallic nanoreactor (CBPNs@HA) is elaborately designed for complementary chemodynamic-immunotherapy.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
Glucose oxidase (GOX)-induced starvation is a safe treatment for tumor. However, the non-specific targeting of GOX and the plasticity of tumor metabolism lead to toxic side effects and low tumor mortality. Thus, it is necessary to develop a synergistic strategy with high tumor targeting specificity to enhance the mortality of GOX.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, PR China. Electronic address:
Developing a catalytic nanoenzyme activated by the tumor microenvironment (TME) shows excellent potential for in situ cancer treatment. However, the rational design of a cascade procedure to achieve high therapeutic efficiency remains challenging. In this study, the colorectal TME-responsive multifunctional cascade nanoenzyme CuO@MnO@glucose oxidase (GOx)@hyaluronic acid (HA) was developed to target in situ cancer starvation/chemodynamic therapy (CDT)/photothermal therapy (PTT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!