Background: Small extracellular vesicles (sEVs) obtained from human umbilical cord mesenchymal stromal cells (MSCs) have shown cardioprotective efficacy in doxorubicin-induced cardiotoxicity (DIC). However, their clinical application is limited due to the low yield and high consumption. This study aims to achieve large-scale production of sEVs using a three-dimensional (3D) bioreactor system. In addition, sEVs were developed to deliver Ginsenoside Rg1 (Rg1), a compound derived from traditional Chinese medicine, , that has cardioprotective properties but limited bioavailability, to enhance the treatment of DIC.

Methods: The 3D bioreactor system with spinner flasks was used to expand human umbilical cord MSCs and collect MSC-conditioned medium. Subsequently, sEVs were isolated from the conditioned medium using differential ultra-centrifugation (dUC). The sEVs were loaded with Ginsenoside Rg1 by electroporation and evaluated for cardioprotective efficacy using Cell Counting Kit-8 (CCK-8) analysis, Annexin V/PI staining and live cell count of H9c2 cells under DIC.

Results: Using the 3D bioreactor system with spinner flasks, the expansion of MSCs reached ~600 million, and the production of sEVs was up to 2.2 × 10 particles in five days with significantly reduced bench work compared to traditional 2D flasks. With the optimized protocol, the Ginsenoside Rg1 loading efficiency of sEVs by electroporation was ~21%, higher than sonication or co-incubation. Moreover, Rg1-loaded sEVs had attenuated DOX-induced cardiotoxicity with reduced apoptosis compared to free Ginsenoside Rg1 or sEVs.

Conclusions: The 3D culture system scaled up the production of sEVs, which facilitated the Rg1 delivery and attenuated cardiomyocyte apoptosis, suggesting a potential treatment of DOX-induced cardiotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126075PMC
http://dx.doi.org/10.3390/pharmaceutics16050593DOI Listing

Publication Analysis

Top Keywords

bioreactor system
16
ginsenoside rg1
16
cardioprotective efficacy
12
production sevs
12
sevs
9
small extracellular
8
extracellular vesicles
8
efficacy doxorubicin-induced
8
doxorubicin-induced cardiotoxicity
8
human umbilical
8

Similar Publications

Boosting human immunology: harnessing the potential of immune organoids.

EMBO Mol Med

January 2025

Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.

Studying the human immune system in vivo is challenging and often not possible. Therefore, most human immunology studies have been predominantly confined to peripheral blood analyses, which by themselves have inherent limitations, as many immune reactions take place within tissues. For example, potent antibody responses that contribute to fighting infections and provide protection following vaccination require cellular interactions between B cells and T cells in specialized micro-anatomical structures called germinal centers, which are found in secondary lymphoid organs such as spleen, lymph nodes, and tonsils.

View Article and Find Full Text PDF

Enzymatic asymmetric synthesis of l-phenylglycine by amino acid dehydrogenases has potential for industrial applications; however, this is hindered by their low catalytic efficiency toward high-concentration substrates. We identified and characterized a novel leucine dehydrogenase (LeuDH) with a high catalytic efficiency for benzoylformic acid via directed metagenomic approaches. Further, we obtained a triple-point mutant LeuDH-EER (D332E/G333E/L334R) with improved stability and catalytic efficiency through the rational design of distal loop 13.

View Article and Find Full Text PDF

The efficient isolation and molecular analysis of circulating tumor cells (CTCs) from whole blood at single-cell level are crucial for understanding tumor metastasis and developing personalized treatments. The viability of isolated cells is the key prerequisite for the downstream molecular analysis, especially for RNA sequencing. This study develops a laser-induced forward transfer -assisted microfiltration system (LIFT-AMFS) for high-viability CTC enrichment and retrieval from whole blood.

View Article and Find Full Text PDF

Characteristics of Phages and Their Interactions With Hosts in Anaerobic Reactors.

Environ Microbiol

January 2025

Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, China.

Anaerobic digestion (AD) of organic wastes relies on the interaction and cooperation of various microorganisms. Phages are crucial components of the microbial community in AD systems, but their diversity and interactions with the prokaryotic populations are still inadequately comprehended. In this study, 2121 viral operational taxonomic units (vOTUs) were recovered from 12 anaerobic fatty acid-fed reactors.

View Article and Find Full Text PDF

Islet transplantation and more recently stem cell-derived islets were shown to successfully re-establish glycemic control in people with type 1 diabetes under immunosuppression. These results were achieved through intraportal infusion which leads to early graft losses and limits the capacity to contain and retrieve implanted cells in case of adverse events. Extra-hepatic sites and encapsulation devices have been developed to address these challenges and potentially create an immunoprotective or immune-privileged environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!