Plant Protease Inhibitors as Emerging Antimicrobial Peptide Agents: A Comprehensive Review.

Pharmaceutics

Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina.

Published: April 2024

Antimicrobial peptides (AMPs) are important mediator molecules of the innate defense mechanisms in a wide range of living organisms, including bacteria, mammals, and plants. Among them, peptide protease inhibitors (PPIs) from plants play a central role in their defense mechanisms by directly attacking pathogens or by modulating the plant's defense response. The growing prevalence of microbial resistance to currently available antibiotics has intensified the interest concerning these molecules as novel antimicrobial agents. In this scenario, PPIs isolated from a variety of plants have shown potential in inhibiting the growth of pathogenic bacteria, protozoans, and fungal strains, either by interfering with essential biochemical or physiological processes or by altering the permeability of biological membranes of invading organisms. Moreover, these molecules are active inhibitors of a range of proteases, including aspartic, serine, and cysteine types, with some showing particular efficacy as trypsin and chymotrypsin inhibitors. In this review, we provide a comprehensive analysis of the potential of plant-derived PPIs as novel antimicrobial molecules, highlighting their broad-spectrum antimicrobial efficacy, specificity, and minimal toxicity. These natural compounds exhibit diverse mechanisms of action and often multifunctionality, positioning them as promising molecular scaffolds for developing new therapeutic antibacterial agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125377PMC
http://dx.doi.org/10.3390/pharmaceutics16050582DOI Listing

Publication Analysis

Top Keywords

protease inhibitors
8
defense mechanisms
8
novel antimicrobial
8
antimicrobial
5
plant protease
4
inhibitors
4
inhibitors emerging
4
emerging antimicrobial
4
antimicrobial peptide
4
peptide agents
4

Similar Publications

Background: Venous thromboembolism (VTE) is a common complication after hip arthroplasty. Here, we investigated the clinical efficacy and safety of prophylactic aspirin vs. conventional therapy in hip arthroplasty for femoral neck fracture.

View Article and Find Full Text PDF

Loss of hepatocyte growth factor activator inhibitor type 1 (HAI-1) upregulates MMP-9 expression and induces degradation of the epidermal basement membrane.

Hum Cell

December 2024

Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan.

Hepatocyte growth factor activator inhibitor type 1 (HAI-1), which is encoded by the SPINT1 gene, is a membrane-associated serine proteinase inhibitor abundantly expressed in epithelial tissues. We had previously demonstrated that HAI-1 is critical for placental development, epidermal keratinization, and maintenance of keratinocyte morphology by regulating cognate proteases, matriptase and prostasin. After performing ultrastructural analysis of Spint1-deleted skin tissues, our results showed that Spint1-deleted epidermis exhibited partially disrupted epidermal basement-membrane structures.

View Article and Find Full Text PDF

Background/aim: G protein-coupled estrogen receptor 1 (GPER1) appears to play a tumor-suppressive role in cervical squamous cell carcinoma (CSCC)GPER1 suppression leads to significantly increased expression of serpin family E member 1 (SERPINE1)/protein plasminogen activator inhibitor type 1 (PAI-1). The question arises, what role does SERPINE1/PAI-1 play in GPER1-dependent tumorigenic potential of CSCC.

Materials And Methods: SiHa and C33A CSCC cells were treated with GPER1 agonist G1 or antagonist G36.

View Article and Find Full Text PDF

Buckyballs to fight pandemic: Water-soluble fullerene derivatives with pendant carboxylic groups emerge as a new family of promising SARS-CoV-2 inhibitors.

Bioorg Chem

December 2024

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of RAS, Semenov Prospect 1, Chernogolovka 142432, Russia; Zhengzhou Research Institute of HIT, Longyuan East 7th 26, Jinshui District, Zhengzhou, Henan Province 450003, China. Electronic address:

Herein, we present the first experimental study of individual water-soluble fullerene derivatives proving their ability to inhibit SARS-CoV-2 in vitro. The initial screening allowed us to identify a few new compounds that have demonstrated pronounced antiviral activity with IC values as low as 390 nM and selectivity indexes reaching 214. Time-of-addition analysis and molecular docking results suggested that the viral protease and/or the spike protein are the most probable targets inhibited by the fullerene derivatives.

View Article and Find Full Text PDF

Nowadays, direct oral anticoagulants (DOACs) represent the gold standard for venous thromboembolism (VTE) treatment and VTE secondary prophylaxis; nevertheless, the percentage of elderly patients in major trials and literature data about DOACs usage for VTE secondary prophylaxis in the elderly are scant. Our retrospective study tried to evaluate low-dose DOACs efficacy and safety for elderly VTE secondary prophylaxis in a real-life setting. A cohort of 73 patients (≥ 75 years) considered at high risk of VTE recurrence was treated with apixaban 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!