AI Article Synopsis

  • Metastatic castration-resistant prostate cancer (mCRPC) presents a major challenge in treatment due to its aggressive nature and the reprogramming of cancer cells to rely heavily on glycolysis.
  • The researchers developed a computational tool called OncoPredict to analyze drug responses in mCRPC tumors, identifying 77 drugs that show higher sensitivity in tumors with elevated glycolysis levels.
  • They validated three promising candidates – ivermectin, CNF2024, and P276-00 – in vitro under conditions simulating the mCRPC microenvironment, and identified specific biomarkers that may predict drug sensitivity based on glycolysis activity.

Article Abstract

Metastatic castration-resistant prostate cancer (mCRPC) remains a deadly disease due to a lack of efficacious treatments. The reprogramming of cancer metabolism toward elevated glycolysis is a hallmark of mCRPC. Our goal is to identify therapeutics specifically associated with high glycolysis. Here, we established a computational framework to identify new pharmacological agents for mCRPC with heightened glycolysis activity under a tumor microenvironment, followed by in vitro validation. First, using our established computational tool, OncoPredict, we imputed the likelihood of drug responses to approximately 1900 agents in each mCRPC tumor from two large clinical patient cohorts. We selected drugs with predicted sensitivity highly correlated with glycolysis scores. In total, 77 drugs predicted to be more sensitive in high glycolysis mCRPC tumors were identified. These drugs represent diverse mechanisms of action. Three of the candidates, ivermectin, CNF2024, and P276-00, were selected for subsequent vitro validation based on the highest measured drug responses associated with glycolysis/OXPHOS in pan-cancer cell lines. By decreasing the input glucose level in culture media to mimic the mCRPC tumor microenvironments, we induced a high-glycolysis condition in PC3 cells and validated the projected higher sensitivity of all three drugs under this condition ( < 0.0001 for all drugs). For biomarker discovery, ivermectin and P276-00 were predicted to be more sensitive to mCRPC tumors with low androgen receptor activities and high glycolysis activities (AR(low)Gly(high)). In addition, we integrated a protein-protein interaction network and topological methods to identify biomarkers for these drug candidates. and were identified as key biomarkers for ivermectin and CNF2024, respectively, through multiple independent biomarker nomination pipelines. In conclusion, this study offers new efficacious therapeutics beyond traditional androgen-deprivation therapies by precisely targeting mCRPC with high glycolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11124089PMC
http://dx.doi.org/10.3390/ph17050569DOI Listing

Publication Analysis

Top Keywords

high glycolysis
16
metastatic castration-resistant
8
castration-resistant prostate
8
prostate cancer
8
glycolysis
8
heightened glycolysis
8
mcrpc
8
established computational
8
agents mcrpc
8
vitro validation
8

Similar Publications

ENO1 promotes PDAC progression by inhibiting CD8 T cell infiltration through upregulating PD-L1 expression via HIF-1α signaling.

Transl Oncol

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. Electronic address:

Metabolic reprogramming is a hallmark of cancer. The"Warburg effect", also known as aerobic glycolysis, is an essential part of metabolic reprogramming and a central contributor to cancer progression. Moreover, hypoxia is one of the significant features of pancreatic ductal adenocarcinoma (PDAC).

View Article and Find Full Text PDF

The balance between CD8 T cells and regulatory T (Treg) cells in the tumor microenvironment (TME) plays a crucial role in the immune checkpoint inhibition (ICI) therapy in gastric carcinoma (GC). However, related factors leading to the disturbance of TME and resistance to ICI therapy remain unknown. In this study, we applied N6-methyladenosine (m6A) small RNA Epitranscriptomic Microarray and screened out 3'tRF-AlaAGC based on its highest differential expression level and lowest inter-group variance.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) has a complex etiology where insults in multiple pathways conspire to disrupt neuronal function, yet molecular changes underlying AD remain poorly understood. Previously, we performed mass-spectrometry on post-mortem human brain tissue to identify >40 protein co-expression modules correlated to AD pathological and clinical traits. Module 42 has the strongest correlation to AD pathology and consists of 32 proteins including SMOC1, a predicted driver of network behavior and potential biomarker for AD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Miami, Coral Gables, FL, USA.

Background: Cerebral blood flow is decreased in mouse models and patients of Alzheimer's disease (AD). We identified that about 2% of cortical capillaries in the APP/PS1 mouse model of AD had stalled blood flow due to neutrophils obstructing capillaries and contributing to vascular inflammation. Neutrophils are more reactive in AD.

View Article and Find Full Text PDF

Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review).

Oncol Rep

February 2025

Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China.

Non‑small cell lung cancer (NSCLC) is one of the most prevalent and lethal types of cancers worldwide and its high incidence and mortality rates pose a significant public health challenge. Despite significant advances in targeted therapy and immunotherapy, the overall prognosis of patients with NSCLC remains poor. Hypoxia is a critical driving factor in tumor progression, influencing the biological behavior of tumor cells through complex molecular mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!