In Silico Prediction of New Inhibitors for Kirsten Rat Sarcoma G12D Cancer Drug Target Using Machine Learning-Based Virtual Screening, Molecular Docking, and Molecular Dynamic Simulation Approaches.

Pharmaceuticals (Basel)

State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China.

Published: April 2024

Single-point mutations in the Kirsten rat sarcoma (KRAS) viral proto-oncogene are the most common cause of human cancer. In humans, oncogenic KRAS mutations are responsible for about 30% of lung, pancreatic, and colon cancers. One of the predominant mutant KRAS G12D variants is responsible for pancreatic cancer and is an attractive drug target. At the time of writing, no (FDA) approved drugs are available for the KRAS G12D mutant. So, there is a need to develop an effective drug for KRAS G12D. The process of finding new drugs is expensive and time-consuming. On the other hand, in silico drug designing methodologies are cost-effective and less time-consuming. Herein, we employed machine learning algorithms such as K-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF) for the identification of new inhibitors against the KRAS G12D mutant. A total of 82 hits were predicted as active against the KRAS G12D mutant. The active hits were docked into the active site of the KRAS G12D mutant. Furthermore, to evaluate the stability of the compounds with a good docking score, the top two complexes and the standard complex (MRTX-1133) were subjected to 200 ns MD simulation. The top two hits revealed high stability as compared to the standard compound. The binding energy of the top two hits was good as compared to the standard compound. Our identified hits have the potential to inhibit the KRAS G12D mutation and can help combat cancer. To the best of our knowledge, this is the first study in which machine-learning-based virtual screening, molecular docking, and molecular dynamics simulation were carried out for the identification of new promising inhibitors for the KRAS G12D mutant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11124053PMC
http://dx.doi.org/10.3390/ph17050551DOI Listing

Publication Analysis

Top Keywords

kras g12d
32
g12d mutant
20
kras
10
g12d
9
kirsten rat
8
rat sarcoma
8
drug target
8
virtual screening
8
screening molecular
8
molecular docking
8

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.

View Article and Find Full Text PDF

Background: The oncologic significance of specific KRAS point mutations for patients with colorectal liver metastases (CLM) is uncertain. This study aimed to assess the prognostic impact of KRAS point mutations on patients who underwent surgery for CLM.

Methods: Patients who underwent curative-intent surgery for CLM from 2001 to 2020 were selected for the study.

View Article and Find Full Text PDF

PURPOSE Oncogenic mutations in KRAS have been identified in > 85% of pancreatic ductal adenocarcinoma (PDAC) cases. G12D, G12V, and G12R are the most frequent variants. Using large clinical and genomic databases, this study characterizes prognostic and molecular differences between KRAS variants, focusing on KRAS G12D and G12R.

View Article and Find Full Text PDF

Cancers with activating mutations of KRAS show a high prevalence but remain intractable, requiring innovative strategies to overcome the poor targetability of KRAS. Here, we report that KRAS expression is post-translationally up-regulated through deubiquitination when the scaffolding function of NDRG3 (N-Myc downstream-regulated gene 3) promotes specific interaction between KRAS and a deubiquitinating enzyme, USP9X. In KRAS-mutant cancer cells KRAS protein expression, downstream signaling, and cell growth are highly dependent on NDRG3.

View Article and Find Full Text PDF

Identification of novel KRAS neoantigen specific TCRs and a strategy to eliminate off-target recognition.

J Transl Med

January 2025

Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.

Background: T cell receptor (TCR)-engineered T cells targeting neoantigens originated from mutations in KRAS gene have demonstrated promising outcomes in clinical trials against solid tumors. However, the challenge lies in developing tumor-specific TCRs that avoid cross-reactivity with self-antigens to minimize the possibility of severe clinical toxicities. Current research efforts have been put towards strategies to eliminate TCR off-target recognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!