A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heavy Metal Concentration Estimation for Different Farmland Soils Based on Projection Pursuit and LightGBM with Hyperspectral Images. | LitMetric

Heavy metal pollution in farmland soil threatens soil environmental quality. It is an important task to quickly grasp the status of heavy metal pollution in farmland soil in a region. Hyperspectral remote sensing technology has been widely used in soil heavy metal concentration monitoring. How to improve the accuracy and reliability of its estimation model is a hot topic. This study analyzed 440 soil samples from Sihe Town and the surrounding agricultural areas in Yushu City, Jilin Province. Considering the differences between different types of soils, a local regression model of heavy metal concentrations (As and Cu) was established based on projection pursuit (PP) and light gradient boosting machine (LightGBM) algorithms. Based on the estimations, a spatial distribution map of soil heavy metals in the region was drawn. The findings of this study showed that considering the differences between different soils to construct a local regression estimation model of soil heavy metal concentration improved the estimation accuracy. Specifically, the relative percent difference () of As and Cu element estimations in black soil increased the most, by 0.30 and 0.26, respectively. The regional spatial distribution map of heavy metal concentration derived from local regression showed high spatial variability. The number of characteristic bands screened by the PP method accounted for 10-13% of the total spectral bands, effectively reducing the model complexity. Compared with the traditional machine model, the LightGBM model showed better estimation ability, and the highest determination coefficients () of different soil validation sets reached 0.73 (As) and 0.75 (Cu), respectively. In this study, the constructed PP-LightGBM estimation model takes into account the differences in soil types, which effectively improves the accuracy and reliability of hyperspectral image estimation of soil heavy metal concentration and provides a reference for drawing large-scale spatial distributions of heavy metals from hyperspectral images and mastering soil environmental quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125194PMC
http://dx.doi.org/10.3390/s24103251DOI Listing

Publication Analysis

Top Keywords

heavy metal
32
metal concentration
20
soil heavy
16
soil
12
estimation model
12
local regression
12
heavy
10
based projection
8
projection pursuit
8
hyperspectral images
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!