A rapid method that uses super-resolution magnetic array data is proposed to localize an unknown number of magnets in a magnetic array. A magnetic data super-resolution (SR) neural network was developed to improve the resolution of a magnetic sensor array. The approximate 3D positions of multiple targets were then obtained based on the normalized source strength (NSS) and magnetic gradient tensor (MGT) inversion. Finally, refined inversion of the position and magnetic moment was performed using a trust region reflective algorithm (TRR). The effectiveness of the proposed method was examined using experimental field data collected from a magnetic sensor array. The experimental results showed that all the targets were successfully captured in multiple trials with three to five targets with an average positioning error of less than 3 mm and an average time of less than 300 ms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125228 | PMC |
http://dx.doi.org/10.3390/s24103226 | DOI Listing |
Methods Mol Biol
December 2024
Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Martinsried, Germany.
Quant Imaging Med Surg
December 2024
Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA.
Background: Low-field open magnetic resonance imaging (MRI) systems, typically operating at magnetic field strengths below 1 Tesla, has greatly expanded the accessibility of MRI technology to meet a wide range of patient needs. However, the inherent challenges of low-field MRI, such as limited signal-to-noise ratios and limited availability of dedicated radiofrequency (RF) coils, have prompted the need for innovative coil designs that can improve imaging quality and diagnostic capabilities. In this work, we introduce a multimodal axial array resonator and its implementation in a volume coil, or referred to as a coupled stack-up volume coil, to address these challenges in low-field open MRI.
View Article and Find Full Text PDFCell Death Dis
December 2024
Institute for Anatomy II, Department of Neuroanatomy, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, Medical Faculty, Essen, Germany.
Retinoblastoma (RB) is an intraocular tumor arising from retinal cone progenitor cells affecting young children. In the last couple of years, RB treatment evolved towards eye preserving therapies. Therefore, investigating intratumoral differences and the RB tumor microenvironment (TME), regulating tumorigenesis and metastasis, is crucial.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Oxide superlattices reveal a rich array of emergent properties derived from the composition modulation and the resulting lattice distortion, charge transfer, and symmetry reduction that occur at the interfaces between the layers. The great majority of studies have focused on perovskite oxide superlattices, revealing, for example, the appearance of an interfacial 2D electron gas, magnetic moment, or improper ferroelectric polarization that is not present in the parent phases. Garnets possess greater structural complexity than perovskites: the cubic garnet unit cell contains 160 atoms with the cations distributed between three different coordination sites, and garnets exhibit a wide range of useful properties, including ferrimagnetism and ion transport.
View Article and Find Full Text PDFElectron paramagnetic resonance (EPR) spectroscopy has long been established across various scientific disciplines for characterizing organic radicals, organometallic complexes, protein structures and dynamics, polymerization processes, and radical degradation phenomena. Despite its extensive utility in these areas, EPR spectroscopy's application within pharmaceutical science has historically been constrained, primarily due to factors such as high equipment costs, a steep learning curve, complex spectral deconvolution and analysis, and a traditional lack of emphasis on single-electron chemistry in pharmaceutical research. This review aims to provide a thorough examination of EPR spectroscopy's applications in analyzing a wide array of para-magnetic species relevant to pharmaceutical research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!