A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sensor for Rapid In-Field Classification of Cannabis Samples Based on Near-Infrared Spectroscopy. | LitMetric

A rugged handheld sensor for rapid in-field classification of cannabis samples based on their THC content using ultra-compact near-infrared spectrometer technology is presented. The device is designed for use by the Austrian authorities to discriminate between legal and illegal cannabis samples directly at the place of intervention. Hence, the sensor allows direct measurement through commonly encountered transparent plastic packaging made from polypropylene or polyethylene without any sample preparation. The measurement time is below 20 s. Measured spectral data are evaluated using partial least squares discriminant analysis directly on the device's hardware, eliminating the need for internet connectivity for cloud computing. The classification result is visually indicated directly on the sensor via a colored LED. Validation of the sensor is performed on an independent data set acquired by non-expert users after a short introduction. Despite the challenging setting, the achieved classification accuracy is higher than 80%. Therefore, the handheld sensor has the potential to reduce the number of unnecessarily confiscated legal cannabis samples, which would lead to significant monetary savings for the authorities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11124929PMC
http://dx.doi.org/10.3390/s24103188DOI Listing

Publication Analysis

Top Keywords

cannabis samples
16
sensor rapid
8
rapid in-field
8
in-field classification
8
classification cannabis
8
samples based
8
handheld sensor
8
sensor
6
classification
4
cannabis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!