DMAF-NET: Deep Multi-Scale Attention Fusion Network for Hyperspectral Image Classification with Limited Samples.

Sensors (Basel)

State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China.

Published: May 2024

In recent years, deep learning methods have achieved remarkable success in hyperspectral image classification (HSIC), and the utilization of convolutional neural networks (CNNs) has proven to be highly effective. However, there are still several critical issues that need to be addressed in the HSIC task, such as the lack of labeled training samples, which constrains the classification accuracy and generalization ability of CNNs. To address this problem, a deep multi-scale attention fusion network (DMAF-NET) is proposed in this paper. This network is based on multi-scale features and fully exploits the deep features of samples from multiple levels and different perspectives with an aim to enhance HSIC results using limited samples. The innovation of this article is mainly reflected in three aspects: Firstly, a novel baseline network for multi-scale feature extraction is designed with a pyramid structure and densely connected 3D octave convolutional network enabling the extraction of deep-level information from features at different granularities. Secondly, a multi-scale spatial-spectral attention module and a pyramidal multi-scale channel attention module are designed, respectively. This allows modeling of the comprehensive dependencies of coordinates and directions, local and global, in four dimensions. Finally, a multi-attention fusion module is designed to effectively combine feature mappings extracted from multiple branches. Extensive experiments on four popular datasets demonstrate that the proposed method can achieve high classification accuracy even with fewer labeled samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125349PMC
http://dx.doi.org/10.3390/s24103153DOI Listing

Publication Analysis

Top Keywords

deep multi-scale
8
multi-scale attention
8
attention fusion
8
fusion network
8
hyperspectral image
8
image classification
8
limited samples
8
classification accuracy
8
attention module
8
module designed
8

Similar Publications

MPIC: Exploring alternative approach to standard convolution in deep neural networks.

Neural Netw

December 2024

Institute of Automation, Chinese Academy of Sciences, MAIS, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 101408, China.

In the rapidly evolving field of deep learning, Convolutional Neural Networks (CNNs) retain their unique strengths and applicability in processing grid-structured data such as images, despite the surge of Transformer architectures. This paper explores alternatives to the standard convolution, with the objective of augmenting its feature extraction prowess while maintaining a similar parameter count. We propose innovative solutions targeting depthwise separable convolution and standard convolution, culminating in our Multi-scale Progressive Inference Convolution (MPIC).

View Article and Find Full Text PDF

Due to the low contrast of abdominal CT (Computer Tomography) images and the similar color and shape of the liver to other organs such as the spleen, stomach, and kidneys, liver segmentation presents significant challenges. Additionally, 2D CT images obtained from different angles (such as sagittal, coronal, and transverse planes) increase the diversity of liver morphology and the complexity of segmentation. To address these issues, this paper proposes a Detail Enhanced Convolution (DE Conv) to improve liver feature learning and thereby enhance liver segmentation performance.

View Article and Find Full Text PDF

PFSH-Net: Parallel frequency-spatial hybrid network for segmentation of kidney stones in pre-contrast computed tomography images of dogs.

Comput Biol Med

January 2025

Division of Electronics and Information Engineering, College of Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, 54896, Jeonju, Republic of Korea. Electronic address:

Kidney stone is a common urological disease in dogs and can lead to serious complications such as pyelonephritis and kidney failure. However, manual diagnosis involves a lot of burdens on radiologists and may cause human errors due to fatigue. Automated methods using deep learning models have been explored to overcome this limitation.

View Article and Find Full Text PDF

Background: AD prevention and early interventions require tools for evaluation of people during aging for diagnosis and prognosis of AD conversion. Since AD is a complicated continuum of neurodegenerative processes, developing of such tools have been difficult because it needs longitudinal and multimodal data which are often complicated and incomplete. To address this challenge, we are developing AI4AD framework using ADNI data.

View Article and Find Full Text PDF

Microscopic imaging aids disease diagnosis by describing quantitative cell morphology and tissue size. However, the high spatial resolution of these images poses significant challenges for manual quantitative evaluation. This project proposes using computer-aided analysis methods to address these challenges, enabling rapid and precise clinical diagnosis, course analysis, and prognostic prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!