With the increase in groundwater exploration, underground mineral resource exploration, and non-destructive investigation of cultural relics, high-resolution earth electrical characteristic measurement has emerged as a mainstream technique owing to its advantageous non-destructive detection capability. To enhance the transmission power of the high-frequency transmitter in high-resolution multiple earth electrical characteristic measurement systems (MECS), this study proposes a high-frequency, high-current transmission technique based on adaptive impedance matching and implemented through the integration of resonant capacitors, a controllable reactor, high-frequency transformers, and corresponding control circuits. A high-current precisely controllable reactor with a 94% inductance variation range was designed and combined with resonant capacitors to reduce circuit impedance. Additionally, high-frequency transformers were employed to further increase the transmission voltage. A prototype was developed and tested, demonstrating an increase in transmission current at frequencies between 10 and 120 kHz with a peak active power of 200 W. Under the same transmission voltage, compared to the transmission circuit without impedance matching, the transmission current increased to a maximum of 16.7 times (average of 10.8 times), whereas compared to the transmission circuit using only traditional impedance matching, the transmission current increased by a maximum of 10.0 times (average of 4.2 times), effectively improving the exploration resolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125145 | PMC |
http://dx.doi.org/10.3390/s24103110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!