Highly selective etching of silicon nitride (SiN) and silicon dioxide (SiO) has received considerable attention from the semiconductor community owing to its precise patterning and cost efficiency. We investigated the etching selectivity of SiN and SiO in an NF/O radio-frequency glow discharge. The etch rate linearly depended on the source and bias powers, whereas the etch selectivity was affected by the power and ratio of the gas mixture. We found that the selectivity can be controlled by lowering the power with a suitable gas ratio, which affects the surface reaction during the etching process. X-ray photoelectron spectroscopy of the SiN and QMS measurements support the effect of surface reaction on the selectivity change by surface oxidation and nitrogen reduction with the increasing flow of O. We suggest that the creation of SiON bonds on the surface by NO oxidation is the key mechanism to change the etch selectivity of SiN over SiO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125003PMC
http://dx.doi.org/10.3390/s24103089DOI Listing

Publication Analysis

Top Keywords

surface reaction
12
selectivity sin
8
sin sio
8
etch selectivity
8
surface oxidation
8
selectivity
6
surface
5
enhancing sin
4
sin selectivity
4
sio
4

Similar Publications

Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.

View Article and Find Full Text PDF

Background: Studies on acceptance of cosmetic surgery may not be cross-culturally invariant, but little is known about it in non-Western populations. Therefore, it is necessary to develop cross-cultural research on it.

Methods: 230 international students in China aged 18-27 years (M = 21.

View Article and Find Full Text PDF

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

Non-catalytic glycerol dehydrogenation to dihydroxyacetone using needle-in-tube dielectric barrier discharge plasma.

Sci Rep

December 2024

Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.

Glycerol, a by-product of biodiesel production, could be converted into various value-added products. This work focuses on its dehydrogenation to dihydroxyacetone (DHA), which is mainly used in the cosmetics industry. While several methods have been employed for DHA production, some necessitate catalysts and involve harsh reaction conditions as well as long reaction times.

View Article and Find Full Text PDF

Magnetic supported ionic liquids are a unique subclass of ionic liquids that possess the ability to respond to external magnetic fields, combining the advantageous properties of traditional ILs with this magnetic responsiveness. A novel magnetic ionic nanocatalyst of FeO@SiO@CPTMS-DTPA was prepared by anchoring an ionic liquid, CPTMS-DTPA, onto the surface of silica-modified FeO. The morphology, chemical structure and magnetic property of the magnetic ionic nanocatalyst structure was characterized using scanning electron microscopy, X-ray powder diffraction, Fourier transformation infrared spectroscopy, vibrating sample magnetometer, and thermogravimetric analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!