Electrical Sensor Calibration by Fuzzy Clustering with Mandatory Constraint.

Sensors (Basel)

School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China.

Published: May 2024

AI Article Synopsis

  • - Electrical tomography sensors are essential for detecting and estimating parameters in pipelines, but they require calibration with sufficient labeled data to be effective.
  • - The complexity of real-world environments often leads to inaccuracies in sensor calibration due to uncertainties or invalid labeling data, making it difficult to achieve reliable results.
  • - The paper introduces a semi-supervised fuzzy clustering algorithm that uses accurate partial data to correct errors in labeled data, demonstrating improved accuracy and stability through experiments on a dredger.

Article Abstract

Electrical tomography sensors have been widely used for pipeline parameter detection and estimation. Before they can be used in formal applications, the sensors must be calibrated using enough labeled data. However, due to the high complexity of actual measuring environments, the calibrated sensors are inaccurate since the labeling data may be uncertain, inconsistent, incomplete, or even invalid. Alternatively, it is always possible to obtain partial data with accurate labels, which can form mandatory constraints to correct errors in other labeling data. In this paper, a semi-supervised fuzzy clustering algorithm is proposed, and the fuzzy membership degree in the algorithm leads to a set of mandatory constraints to correct these inaccurate labels. Experiments in a dredger validate the proposed algorithm in terms of its accuracy and stability. This new fuzzy clustering algorithm can generally decrease the error of labeling data in any sensor calibration process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125234PMC
http://dx.doi.org/10.3390/s24103068DOI Listing

Publication Analysis

Top Keywords

fuzzy clustering
12
labeling data
12
sensor calibration
8
mandatory constraints
8
constraints correct
8
clustering algorithm
8
data
5
electrical sensor
4
fuzzy
4
calibration fuzzy
4

Similar Publications

Study of spectral overlap and heterogeneity in agriculture based on soft classification techniques.

MethodsX

June 2025

Department of Biological and Pharmaceutical Environmental Sciences and Technologies, University of Campania "L. Vanvitelli", Via Antonio Vivaldi, 43, Caserta 81100, CE, Italy.

This study explores the application of fuzzy soft classification techniques combined with vegetation indices to address spectral overlap and heterogeneity in agricultural image processing. The methodology focuses on the integration of three key vegetation indices: Soil-Adjusted Vegetation Index (SAVI), Modified Soil-Adjusted Vegetation Index (MSAVI), and Modified Chlorophyll Absorption in Reflectance Index (MCARI), with Modified Possibilistic C-Means (MPCM) clustering. The analysis involves preprocessing the image data, calculating the vegetation indices, and applying the MPCM algorithm to perform soft classification, allowing pixels to belong to multiple classes with varying degrees of membership.

View Article and Find Full Text PDF

Assessment and application of tropical cyclone clustering in the South China Sea.

Sci Rep

January 2025

College of Ocean and Meteorology & South China Sea Institute of Marine Meteorology, Guangdong Ocean University, 524088, Zhanjiang, Guangdong, China.

Accurate classification of tropical cyclone (TC) tracks is essential for evaluating and mitigating the potential disaster risks associated with TCs. In this study, three commonly used methods (K-means, Fuzzy C-Means, and Self-Organizing Maps) are assessed for clustering historical TC tracks that originated in the South China Sea from 1949 to 2023. The results show that the K-means method performs the best, while the Fuzzy C-Means and Self-Organizing Maps methods are also viable alternatives.

View Article and Find Full Text PDF

In this work, we explored the role of a single electron in the energy of neutral and charged clusters of using data visualization and statistical techniques as a new insight. Initially, we studied the effects of one electron, time, and temperature on energy using multiple linear regression analysis with dummy variables, and the results demonstrated that all three predictors significantly affected the energy. Time had a positive impact (direct ratio effect) on the energy of , and and a negative impact (inverse ratio effect) on the energy of while temperature had a positive effect on the energy of all three sodium clusters.

View Article and Find Full Text PDF

Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering.

Sci Rep

January 2025

Department of Software, Faculty of Artificial Intelligence and Software, Gachon University, Seongnam-si, 13120, Republic of Korea.

Network security is crucial in today's digital world, since there are multiple ongoing threats to sensitive data and vital infrastructure. The aim of this study to improve network security by combining methods for instruction detection from machine learning (ML) and deep learning (DL). Attackers have tried to breach security systems by accessing networks and obtaining sensitive information.

View Article and Find Full Text PDF

Advanced thyroid nodule detection using ultrasonography image analysis and bilateral mean clustering strategies.

Comput Biol Med

January 2025

Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India. Electronic address:

This research work focuses on developing an advanced diagnostic method for thyroid nodules using ultrasonography images. The core idea revolves around the observation that the presence and amount of calcium flecks in thyroid nodules can indicate their severity, potentially leading to severe thyroid cancer. A novel technique, named Bilateral Mean Clustering Strategy (Bi-MCS), is proposed, combining the strengths of Fuzzy C mean and K-mean clustering approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!