Biosensors based on ion-sensitive field effect transistors (ISFETs) combined with aptamers offer a promising and convenient solution for point-of-care testing applications due to the ability for fast and label-free detection of a wide range of biomarkers. Mobile and easy-to-use readout devices for the ISFET aptasensors would contribute to further development of the field. In this paper, the development of a portable PC-controlled device for detecting aptamer-target interactions using ISFETs is described. The device assembly allows selective modification of individual ISFETs with different oligonucleotides. TaO-gated ISFET structures were optimized to minimize trapped charge and capacitive attenuation. Integrated CMOS readout circuits with linear transfer function were used to minimize the distortion of the original ISFET signal. An external analog signal digitizer with constant voltage and superimposed high-frequency sine wave reference voltage capabilities was designed to increase sensitivity when reading ISFET signals. The device performance was demonstrated with the aptamer-driven detection of troponin I in both reference voltage setting modes. The sine wave reference voltage measurement method reduced the level of drift over time and enabled a lowering of the minimum detectable analyte concentration. In this mode (constant voltage 2.4 V and 10 kHz 0.1Vp-p), the device allowed the detection of troponin I with a limit of detection of 3.27 ng/mL. Discrimination of acute myocardial infarction was demonstrated with the developed device. The ISFET device provides a platform for the multiplexed detection of different biomarkers in point-of-care testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125907PMC
http://dx.doi.org/10.3390/s24103008DOI Listing

Publication Analysis

Top Keywords

reference voltage
12
point-of-care testing
8
constant voltage
8
sine wave
8
wave reference
8
detection troponin
8
detection
6
isfet
6
device
6
voltage
5

Similar Publications

Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells (QDSSCs) offer a promising alternative due to their stability, low cost, and high-power conversion efficiency (PCE) compared to other third-generation solar cells.

View Article and Find Full Text PDF

Fast activity chirp patterns in focal seizures from patients and animal models.

Epilepsia

December 2024

Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy.

Time-frequency analysis of focal seizure electroencephalographic signals performed with depth electrodes in human temporal lobe structures has revealed the occurrence at onset of oscillations at approximately 30-100 Hz that feature a monotonic rapid decay in frequency content. This seizure onset pattern, referred to as chirp, has been identified as a highly specific and sensitive marker of focal seizures that are characterized by low-voltage fast activity. We report that this chirp pattern is also observed in animal models of temporal lobe epilepsy in both in vivo and in vitro preparations.

View Article and Find Full Text PDF

Voltage-dependent anion channel (VDAC) is the primary conduit for regulated passage of ions and metabolites into and out of a mitochondrion. Calculating the solvation free energy for VDAC is crucial for understanding its stability, function, and interactions within the cellular environment. In this article, numerical schemes for computing the total solvation free energy for VDAC-comprising electrostatic, ideal gas, and excess free energies plus the nonpolar energy-are developed based on a nonuniform size modified Poisson-Boltzmann ion channel (nuSMPBIC) finite element solver along with tetrahedral meshes for VDAC proteins.

View Article and Find Full Text PDF

Poly(ethylene oxide)-(PEO-based solid polymer electrolytes (SPEs) are regarded as excellent candidates for solid-state lithium metal batteries (SSLMBs) due to their inherent safety advantages, processability, low cost, and excellent Li+ ion solvation. However, they suffer from limited oxidation stability (up to 4 V vs Li/Li). In this study, a crosslinked polymer-in-concentrated ionic liquid (PCIL) SPE consisting of PEO, -propyl--methylpyrrolidinium bis(fluorosulfonyl)imide (CmpyrFSI) ionic liquid (IL), and lithium bis(fluorosulfonyl)imide (LiFSI) salt is developed.

View Article and Find Full Text PDF

3D Aligned Tetrameric Ion Channels with Universal Residue Labels for Comparative Structural Analysis.

Biophys J

December 2024

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia; Department of Biochemistry and Biomedical Sciences, Master University, Hamilton, Canada. Electronic address:

Despite their large functional diversity and poor sequence similarity, tetrameric and pseudo-tetrameric potassium, sodium, calcium and cyclic-nucleotide gated channels, as well as two-pore channels, transient receptor potential channels and ionotropic glutamate receptors share a common folding pattern of the transmembrane (TM) helices in the pore-forming domain. In each subunit or repeat, the pore domain has two TM helices connected by a membrane-reentering P-loop. The P-loop includes a membrane-descending helix, P1, which is structurally the most conserved element of these channels, and residues that contribute to the selectivity-filter region at the constriction of the ion-permeating pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!