A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nano-Enhanced Phase Reinforced Magnesium Matrix Composites: A Review of the Matrix, Reinforcement, Interface Design, Properties and Potential Applications. | LitMetric

Nano-Enhanced Phase Reinforced Magnesium Matrix Composites: A Review of the Matrix, Reinforcement, Interface Design, Properties and Potential Applications.

Materials (Basel)

Key Laboratory of Automobile Materials, Ministry of Education and Department of Materials Science and Engineering, Jilin University, Renmin Street No. 5988, Changchun 130025, China.

Published: May 2024

Magnesium matrix composites are essential lightweight metal matrix composites, following aluminum matrix composites, with outstanding application prospects in automotive, aerospace lightweight and biomedical materials because of their high specific strength, low density and specific stiffness, good casting performance and rich resources. However, the inherent low plasticity and poor fatigue resistance of magnesium hamper its further application to a certain extent. Many researchers have tried many strengthening methods to improve the properties of magnesium alloys, while the relationship between wear resistance and plasticity still needs to be further improved. The nanoparticles added exhibit a good strengthening effect, especially the ceramic nanoparticles. Nanoparticle-reinforced magnesium matrix composites not only exhibit a high impact toughness, but also maintain the high strength and wear resistance of ceramic materials, effectively balancing the restriction between the strength and toughness. Therefore, this work aims to provide a review of the state of the art of research on the matrix, reinforcement, design, properties and potential applications of nano-reinforced phase-reinforced magnesium matrix composites (especially ceramic nanoparticle-reinforced ones). The conventional and potential matrices for the fabrication of magnesium matrix composites are introduced. The classification and influence of ceramic reinforcements are assessed, and the factors influencing interface bonding strength between reinforcements and matrix, regulation and design, performance and application are analyzed. Finally, the scope of future research in this field is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122961PMC
http://dx.doi.org/10.3390/ma17102454DOI Listing

Publication Analysis

Top Keywords

matrix composites
28
magnesium matrix
20
matrix
10
matrix reinforcement
8
design properties
8
properties potential
8
potential applications
8
wear resistance
8
magnesium
7
composites
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!