The heat treatment of aluminum alloys is very important in industries where low weight in combination with high wear resistance, good strength, and hardness are important. However, depending on their chemical composition, aluminum alloys are subjected to different mechanical and thermal treatments to achieve the most favorable properties. In this study, an Al-Zn-Mg alloy was heat-treated including solution annealing at 490 °C for 1 h with subsequent artificial aging at 130, 160, and 190 °C for 1, 5, and 9 h. The hardness (HV1) and abrasive wear resistance with three different abrasive grain sizes were measured for all samples. The highest hardness was measured for the samples artificially aged at 130 °C/5 h, 227 HV1, while the lowest hardness was measured for the samples aged at 190 °C/9 h. The highest and the lowest wear resistance was also observed for the same state, i.e., artificially aged at 130 °C/5 h and 190 °C/9 h, respectively. The critical abrasive grain size was detected for some samples, where a decrease in wear rate was observed with an increase in the abrasive grain size from the medium value to the largest. The Response Surface Methodology (RSM) was applied to demonstrate the influence of the input parameters on the material wear rate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122887 | PMC |
http://dx.doi.org/10.3390/ma17102446 | DOI Listing |
ChemistryOpen
January 2025
Department of Chemistry, School of Sciences and Humanities, SR University, Warangal, Telangana, 506371, India.
High-entropy alloys (HEAs), containing five or more elements in equal proportions, have recently made significant achievements in materials science due to their remarkable properties, including high toughness, excellent catalytic, thermal, and electrical conductivity, and resistance to wear and corrosion. This study focuses on a HEA composed of 23Fe-21Cr-18Ni-20Ti-18Mn, synthesized via ball milling. The alloy was treated with hydrochloric acid (HCl) to enhance its active surface area.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China.
Silicone rubber (SR) holds significant potential for everyday wearable devices due to its inherent sweat resistance and flexibility. However, its broader applicability is constrained by poor oil resistance and a suboptimal slip performance. In this study, we developed an SR with durable oil resistance and enhanced slip properties by forming a covalently bonded barrier layer on its surface through a one-step in situ fluorination reaction using F/N.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Mechatronics Engineering, Qingdao University of Science and Technology, Qingdao 266061, China.
This study employed a high-speed rotating crushing process to modify pyrolyzed carbon black (CBp) using self-lubricating and low-friction polytetrafluoroethylene (PTFE). The effects of PTFE content on the dispersion, mechanical properties, wear resistance, and thermal stability of modified PTFE-CBp/natural rubber (NR) composites were investigated. The rotating crushing process from the high-speed grinder altered the physical structure of PTFE, forming tiny fibrous structures that interspersed among the CBp particles.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Plasma and Radiation Physics, National Institute for Laser, 077125 Magurele, Romania.
CAM/CAD composites are widely used as dental restoration materials due to their resistivity to wear. The purpose of this study was to determine the effect of human gingival fibroblast cells on three different computer-aided design/computer-aided manufacturing (CAD/CAM) hybrid materials with resin-based composites (RBC) and to assess their stability following cell growth. The CAM/CAD dental materials were investigated in different conditions as follows: (i) cells (human gingival fibroblasts, HFIB-Gs) incubated over the material for each sample, denoted as A; (ii) reference, the raw material, denoted as B; and (iii) materials incubated in DMEM medium, denoted as C.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China.
Solid-liquid lubrication systems have been widely used to enhance tribological behaviors. Alongside offering exceptional lubrication and wear-resistance performance, the active control of the tribological behavior of lubrication systems in accordance with service conditions is equally critical. To achieve this goal, accurately monitoring the condition of the lubrication system is fundamental.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!