This paper focuses on the mathematical and numerical modeling of the electric arc + laser beam welding (HLAW) process using an innovative model of the Yb:YAG laser heat source. Laser energy distribution is measured experimentally using a UFF100 analyzer. The results of experimental research, including the beam profile and energetic characteristics of an electric arc, are used in the model. The laser beam description is based on geostatistical kriging interpolation, whereas the electric arc is modeled using Goldak's distribution. Hybrid heat source models are used in numerical algorithms to analyze physical phenomena occurring in the laser-arc hybrid welding process. Thermal phenomena with fluid flow in the fusion zone (FZ) are described by continuum conservation equations. The kinetics of phase transformations in the solid state are determined using Johnson-Mehl-Avrami (JMA) and Koistinen-Marburger (KM) equations. A continuous cooling transformation (CCT) diagram is determined using interpolation functions and experimental research. An experimental dilatometric analysis for the chosen cooling rates is performed to define the start and final temperatures as well as the start and final times of phase transformations. Computer simulations of butt-welding of S355 steel are executed to describe temperature and melted material velocity profiles. The predicted FZ and heat-affected zone (HAZ) are compared to cross-sections of hybrid welded joints, performed using different laser beam focusing. The obtained results confirm the significant influence of the power distribution of the heat source and the laser beam focusing point on the temperature distribution and the characteristic zones of the joint.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122839 | PMC |
http://dx.doi.org/10.3390/ma17102364 | DOI Listing |
Eur J Radiol
January 2025
Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; Fraunhofer Institute for Laser Technology (ILT), 52074 Aachen, Germany.
Purpose: Directional deep brain stimulation (dDBS) relies on electrodes steering the stimulation field in a specific direction. Post implantation, however, the intended and real orientation of the lead frequently deviates e.g.
View Article and Find Full Text PDFLasers Med Sci
January 2025
International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
Bone regeneration is a complex process influenced by inflammation and pathological conditions. Efforts to enhance this process include chemical and physical interventions, with PBMT therapy showing promise in improving bone regeneration. Despite conflicting findings in existing literature, this review aims to synthesize clinical evidence on using therapy (PBMT) in bone regeneration and explore its potential clinical applications.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China.
The elemental imaging of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatial information on elements and therefore can further investigate the growth or evolution processes of an analyte. However, the accurate determination of spatial information is limited by the decoupling between the elemental distribution and mass spectrometry signals. This phenomenon, which is more distinct when high-diffusion ablation cells are used, arises from the overlap of ablation and the transport dispersion of aerosols.
View Article and Find Full Text PDFStruct Dyn
January 2025
Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
School of Optometry, Indiana University, Bloomington, IN, USA.
To measure the influence of ganglion cell layer (GCL) thickness on the changes in size and red blood cell (RBC) flow in small retinal vessels evoked by full-field flicker. We used a dual-beam adaptive optics scanning laser ophthalmoscope to image 11 healthy young controls in two retinal areas with significantly different GCL thicknesses. All capillaries and arterioles of the superficial vascular plexus were responsive to the flicker stimulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!