Stimulation of Biological Structures on the Nanoscale Using Interfaces with Large Built-In Spontaneous Polarizations.

Materials (Basel)

Electrical and Computer Engineering Department and Physics Department, University of Illinois at Chicago, Chicago, IL 60607, USA.

Published: May 2024

The electric potential stimulation of biological structures in aqueous environments is well-known to be a result of the gating of voltage-gated ion channels. Such voltage-gated ion channels are ubiquitous in the membranes of a wide variety of cells and they play central roles in a wide variety of sensing mechanisms and neuronal functions in biological systems. Experimental studies of ion-channel gating are frequently conducted using path-clamp techniques by placing a cumbersome external electrode in the vicinity of the extracellular side of the ion channel. Recently, it has been demonstrated that laser-induced polarization of nanoscale quantum dots can produce voltage sufficient to gate voltage-gated ion channels. This study specifically focuses on a new method of gating voltage-gated ion channels using 2D structures made of materials exhibiting large naturally occurring spontaneous polarizations, thereby eliminating the need for an external electrode or an illuminating laser. The work presents the use of self-polarizing semiconductor flakes, namely, 2H-SiC, ZnO, and GaN, to produce electric potential that is sufficient to gate voltage-gated ion channels when existing in proximity to it.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123190PMC
http://dx.doi.org/10.3390/ma17102332DOI Listing

Publication Analysis

Top Keywords

voltage-gated ion
20
ion channels
20
stimulation biological
8
biological structures
8
spontaneous polarizations
8
electric potential
8
gating voltage-gated
8
wide variety
8
external electrode
8
sufficient gate
8

Similar Publications

Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.

View Article and Find Full Text PDF

Insight into a multifunctional potassium channel Kv1.3 and its novel implication in chronic kidney disease.

Life Sci

December 2024

Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia. Electronic address:

Chronic kidney disease (CKD), a global public health problem, causes substantial morbidity and mortality worldwide. Innovative therapeutic strategies to mitigate the progression of CKD are needed due to the limitations of existing treatments. Kv1.

View Article and Find Full Text PDF

Peptide Toxins from Marine Snails with Activity on Potassium Channels and/or Currents.

Toxins (Basel)

November 2024

Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico.

Toxins from snails are peptides characterized by a great structural and functional diversity. They have a high affinity for a wide range of membrane proteins such as ion channels, neurotransmitter transporters, and G protein-coupled receptors. Potassium ion channels are integral proteins of cell membranes that play vital roles in physiological processes in muscle and neuron cells, among others, and reports in the literature indicate that perturbation in their function (by mutations or ectopic expression) may result in the development and progression of different ailments in humans.

View Article and Find Full Text PDF

Adaptive remodeling of rat adrenomedullary stimulus-secretion coupling in a chronic hypertensive environment.

Cell Mol Life Sci

December 2024

Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.

Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation.

View Article and Find Full Text PDF

PIKfyve (1-phosphatidylinositol 3-phosphate 5-kinase), a lipid kinase, plays an important role in generating phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P). SGC-PIKFYVE-1, a potent and selective inhibitor of PIKfyve, has been used as a chemical probe to explore pathways dependent on PIKfyve activity. Based on reported changes in membrane dynamics and ion transport in response to PIKfyve inhibition, we hypothesized that pharmacological inhibition of PIKfyve could modulate pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!