Aiming to address the vibration noise problems on ships, we constructed a piezoelectric phononic crystal (PC) plate structure model, solved the governing equations of the structure using the partial differential equations module (PDE) in the finite element softwareCOMSOL6.1, and obtained the corresponding energy band structure, transmission curves, and vibration modal diagrams. The application of this method to probe the structural properties of two-dimensional piezoelectric PCs is described in detail. The calculation results obtained using this method were compared with the structures obtained using the traditional plane wave expansion method (PWE) and the finite element method (FE). The results were found to be in perfect agreement, which verified the feasibility of this method. To safely and effectively adjust the bandgap within a reasonable voltage range, this paper explored the order of magnitude of the plate thickness, the influence of the voltage on the bandgap, and the dependence between them. It was found that the smaller the order of magnitude of the plate thickness, the smaller the order of magnitude of the band in which the bandgap was located. The magnitude of the driving voltage that made the bandgap change became smaller accordingly. The new idea of attaching the PC plate to the conventional plate structure to achieve a vibration damping effect is also briefly introduced. Finally, the effects of lattice constant, plate width, and thickness on the bandgap were investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122934PMC
http://dx.doi.org/10.3390/ma17102329DOI Listing

Publication Analysis

Top Keywords

order magnitude
12
piezoelectric phononic
8
phononic crystal
8
crystal plate
8
plate structure
8
finite element
8
magnitude plate
8
plate thickness
8
voltage bandgap
8
smaller order
8

Similar Publications

Climate change has become an emerging topic, leading to widespread damage. However, when considering climate, attention is drawn to various scales, and urban microclimate has emerged as a trending subject due to its direct relevance to human living environments. Among the microclimatic factors, temperature and precipitation are utilized in order to identify trends.

View Article and Find Full Text PDF

Background And Aims: Genome size varies by orders of magnitude across land plants, and the factors driving evolutionary increases and decreases in genome size vary across lineages. Bryophytes have the smallest genomes relative to other land plants and there is growing evidence for frequent whole genome duplication (WGD) across the lineage. However, the broad patterns of genome size, chromosome number, and WGD have yet to be characterized across bryophytes in a phylogenetic context.

View Article and Find Full Text PDF

Intracellular protein production in bacteria is limited by the need for lysis and costly purification. A promising alternative is to engineer the host organism for protein secretion. While the serovar Typhimurium ( .

View Article and Find Full Text PDF

Pulse approach: a physics-guided machine learning model for thermal analysis in laser-based powder bed fusion of metals.

Prog Addit Manuf

July 2024

Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.

Fast and accurate representation of heat transfer in laser powder-bed fusion of metals (PBF-LB/M) is essential for thermo-mechanical analyses. As an example, it benefits the detection of thermal hotspots at the design stage. While traditional physics-based numerical approaches such as the finite element (FE) method are applicable to a wide variety of problems, they are computationally too expensive for PBF-LB/M due to the space- and time-discretization requirements.

View Article and Find Full Text PDF

Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity.

ACS Cent Sci

January 2025

Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.

The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!