https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=38793378&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=duty+cycle&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_679579ea95e3f58869055e46&query_key=1&retmode=xml&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908 Effects of HiPIMS Duty Cycle on Plasma Discharge and the Properties of Cu Film. | LitMetric

Effects of HiPIMS Duty Cycle on Plasma Discharge and the Properties of Cu Film.

Materials (Basel)

School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

Published: May 2024

In this paper, Cu thin films were deposited on Si (100) substrates by the high-power impulse magnetron sputtering (HiIPMS) technique, and the effects of different duty cycles (from 2.25% to 5.25%) on the plasma discharge characteristics, microstructure, and electrical properties of Cu thin films were investigated. The results of the target current test show that the peak target current remains stable under 2.25% and 3% duty cycle conditions. Under the conditions of a 4.5% and 5.25% duty cycle, the target peak current shows a decreasing trend. The average power of the target shows a rising trend with the increase in the duty cycle, while the peak power of the target shows a decreasing trend with the increase in the duty cycle. The results of OES show that with the increase in the duty cycle, the total peak intensity of copper and argon emissions shows an overall increasing trend. The duty cycle from 3% to 4.5% change in copper and argon emission peak total intensity change is not obvious. The deposition rate and surface morphology of the copper film were investigated by scanning electron microscopy, and the deposition rate of the copper film increased with the increase in the duty cycle, which was mainly due to the increase in the average power. The surface roughness of the copper film was evaluated by atomic force microscopy. X-ray diffraction (XRD) was used to analyze the grain size and texture of the Cu film, and the results showed that the average grain size of the Cu film increased from 38 nm to 59 nm on the (111) and (200) crystal planes. Four-probe square resistance test copper film resistivity in 2.25%, 3% low duty cycle conditions of the copper film resistivity is generally higher than 4.5%, 5.25% high duty cycle conditions, the copper film resistivity shows the trend of change is mainly affected by the copper film grain size and the (111) face of the double effect of the optimal orientation. The lowest resistivity of the copper film measured under the 4.5% duty cycle condition is 1.7005 μΩ·cm, which is close to the intrinsic resistivity of the copper film of 1.67 μΩ·cm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123023PMC
http://dx.doi.org/10.3390/ma17102311DOI Listing

Publication Analysis

Top Keywords

duty cycle
44
copper film
36
increase duty
16
duty
12
film
12
cycle conditions
12
grain size
12
film resistivity
12
cycle
11
copper
11

Similar Publications

Direct Frequency Comb Cavity Ring-Down Spectroscopy Using Vernier Filtering.

J Phys Chem A

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

We present direct frequency comb cavity ring-down spectroscopy with Vernier filtering as a straightforward approach to sensitive and multiplexed trace gas detection. The high finesse cavity acts both to extend the interaction length with the sample and as a spectral filter, alleviating the need for dispersive elements or an interferometer. In this demonstration, a free running interband cascade laser was used to generate a comb centered at 3.

View Article and Find Full Text PDF

When measuring real-time in vivo muscle fatigue with electromyography (), data collection can be compromised by premature sensor removal or environmental noise; therefore, the objective of this study was to develop a postmortem in vivo methodology to induce muscle fatigue and measure it using EMG. Barrows ( = 20) were stratified by weight and randomly allocated into one of two treatments. The treatments consisted of barrows being subjected to a hog electric stunner super-contraction cycle () or not () postmortem.

View Article and Find Full Text PDF

variants cause a range of epilepsy syndromes, including Dravet syndrome, leading to early cognitive and functional impairment. Despite advances in medical management, drug-resistant epilepsy remains common. Vagal nerve stimulation (VNS) has been suggested reducing seizure frequency in these patients but there is a lack of long-term follow-up, quantitative analysis that corrected for confounding factors such as antiseizure medications (ASMs) and the impact of VNS settings on response.

View Article and Find Full Text PDF

Amid ambitious net-zero goals and growing demands for freight logistics, addressing the climate challenges posed by the heavy-duty truck (HDT) sector is an urgent and pivotal task. This study develops an integrated HDT model by incorporating vehicle dynamic simulation and life cycle analysis to quantify energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership associated with three emerging powertrain technologies in various truck use scenarios in China, including battery electric, fuel cell electric, and hydrogen combustion engine trucks. The results reveal varying levels of economic suitability for these powertrain alternatives depending on required driving ranges and duty cycles: the battery electric for regional-haul applications, the hydrogen fuel cell for longer-haul and low-load driving conditions, and the hydrogen combustion engine to meet high power requirements.

View Article and Find Full Text PDF

A Comprehensive Assessment of the Marginal Abatement Costs of CO of Co-Optima Multi-Mode Vehicles.

Energy Fuels

January 2025

Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States.

The Co-Optimization of Fuels and Engines (Co-Optima) is a research and development consortia funded by the U.S. Department of Energy, which has engaged partners from national laboratories, universities, and industry to conduct multidisciplinary research at the intersection of biofuels and combustion sciences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!