Harmful substances in consumer goods pose serious hazards to human health and the environment. However, due to the vast variety of consumer goods and the complexity of their substrates, it is difficult to simultaneously detect multiple harmful substances in different materials. This paper presents a method for the simultaneous determination of 41 harmful substances comprising 17 phthalates (PAEs), 8 organophosphate flame retardants (OPFRs), and 16 polycyclic aromatic hydrocarbons (PAHs) in five types of products using the matrix-matching calibration strategy. The method employs an efficient ultrasonic extraction procedure using a mixture of dichloromethane and methylbenzene, followed by dissolution-precipitation and analysis through gas chromatography-mass spectrometry. Compared with previous experiments, we established a universal pretreatment method suitable for multi-matrix materials to simultaneously determine multiple harmful substances. To evaluate the effects of the matrix on the experimental results, we compared neat standard solutions and matrix-matching standard solutions. The results demonstrated that all compounds were successfully separated within 30 min with excellent separation efficiency. Additionally, the linear relationships of all analytes showed strong correlation coefficients (R) of at least 0.995, ranging from 0.02 mg/L to 20 mg/L. The average recoveries of the target compounds (spiked at three concentration levels) were between 73.6 and 124.1%, with a relative standard deviation (n = 6) varying from 1.2% to 9.9%. Finally, we tested 40 different materials from consumer products and detected 16 harmful substances in 31 samples. Overall, this method is simple and accurate, and it can be used to simultaneously determine multiple types of hazardous substances in multi-matrix materials by minimizing matrix effects, making it an invaluable tool for ensuring product safety and protecting public health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122967 | PMC |
http://dx.doi.org/10.3390/ma17102281 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt.
Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy.
Perfluorinated compounds (PFAS) are well recognized toxic pollutants for humans, but if their effect is equally harmful for healthy and fragile people is unknown. Addressing this question represents a need for ensuring global health and wellbeing to all individuals in a world facing the progressive increase of aging and aging related diseases. This study aimed to evaluate the impact of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) exposure on development and skeletal phenotype using the osteogenesis imperfecta (OI) zebrafish model Chihuahua (Chi/+), carrying a dominant glycine substitution in the α1 chain of collagen I and their wild-type (WT) littermates.
View Article and Find Full Text PDFSci Rep
January 2025
Chemical Engineering and Pilot Plant Department, Engineering & Renewable Energy Research Institute, National Research Centre (NRC), Giza, 12622, Egypt.
Humans have contaminated water supplies with harmful compounds, including different heavy metals. Heavy metals can interfere with human and animal vital organs and metabolic processes. They are also persistent and bioaccumulative.
View Article and Find Full Text PDFCell Chem Biol
January 2025
Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:
The epidermal barrier defends the body against dehydration and harmful substances. The commensal microbiota is essential for proper differentiation and repair of the epidermal barrier, an effect mediated by the aryl hydrocarbon receptor (AHR). However, the microbial mechanisms of AHR activation in skin are less understood.
View Article and Find Full Text PDFAddict Behav
January 2025
Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, RI, USA; Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence, RI, USA.
Purpose: Self-reported drinker identity, the extent to which one views oneself as a drinker, is associated with alcohol consumption and related harms in young adults. The current study examined changes in self-reported drinker identity, theoretically relevant factors associated with drinker identity development, and drinker identity's association with changes in drinking and alcohol-related consequences. We hypothesized that drinker identity would increase over time; theoretically relevant factors would be significantly and positively associated with that increase, and increases in drinking identity would be associated with elevated drinking and related consequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!