AI Article Synopsis

  • The study investigates the performance of single-edge notched concrete beams reinforced with either carbon fiber-reinforced polymer (CFRP) or steel bars, focusing on their failure modes and load-bearing capacities through static and dynamic tests.
  • Static tests revealed that reinforced concrete (RC) beams primarily failed due to shear, while CFRP beams showed bending-shear failure due to weaker bond strength with the concrete.
  • Dynamic impact tests indicated that as impact velocity increased, both beam types transitioned to bending-shear failure; at high velocities, CFRP beams absorbed less energy than RC beams, highlighting their differing mechanical characteristics.

Article Abstract

To explore and compare the failure modes, deformation behaviors, and load-bearing capacities of single-edge notched (SEN) beams strengthened with carbon fiber-reinforced polymer (CFRP) and steel bars, static and dynamic three-point bending tests on both types of concrete beams have been carried out in this study. During the static tests, the electro-hydraulic servo machine served as a loading device to apply pressure to CFRP beams and reinforced concrete (RC) beams. During the impact experiments, different impact velocities were imparted by adjusting the drop hammer's height. Thus, information regarding crack propagation, energy absorption, and deformation was obtained. The results from the static tests showed that the RC beams predominantly experienced shear failure. In contrast, the CFRP beams primarily exhibited bending-shear failure, attributed to the relatively weaker bond strength between the bars and the concrete. Impact tests were conducted at three different velocities in this study. As the impact velocity increased, both types of concrete beams transitioned from bending failure to bending-shear failure. At the lowest velocity, the difference in energy absorption between beams reinforced with different materials was insignificant during the bending process. However, at the highest velocity, CFRP beams absorbed less energy than RC beams. The study of structures' impact failure modes and their mechanical characteristics offers valuable references for the anti-collision design and protection of structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123027PMC
http://dx.doi.org/10.3390/ma17102216DOI Listing

Publication Analysis

Top Keywords

beams reinforced
12
concrete beams
12
cfrp beams
12
beams
11
single-edge notched
8
steel bars
8
failure modes
8
types concrete
8
static tests
8
energy absorption
8

Similar Publications

This study comprehensively compares dynamic and static forces in reinforced concrete (RC) beams, utilising experimental and finite element analysis (FEA) methodologies. Experimental tests involve monotonic two-point loading of 1 m x 150 mm x 150 mm RC beams using a universal testing machine (UTM). Deflection measurements are taken at three distinct locations (S1-S3) using various sensors, including force resisting sensor (FRS), flex sensor (FLS), MEMS accelerometer, and Piezoelectric sensors.

View Article and Find Full Text PDF

In this study, shear-critical reinforced concrete (RC) beams were strengthened by combining the prestressing and near-surface mounted (NSM) rods approaches. The potential danger of failure in such RC beams is a substantial concern as it is considered a potential threat. This study addresses its careful mitigation through experimental identification and numerical analysis to enhance the safety and sustainability of buildings by reducing the probability of failure risk for these RC beams.

View Article and Find Full Text PDF

Flexural Behavior of Innovative Glass Fiber-Reinforced Composite Beams Reinforced with Gypsum-Based Composites.

Polymers (Basel)

November 2024

Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212000, China.

Glass Fiber-Reinforced Composite (GFRP) has found widespread use in engineering structures due to its lightweight construction, high strength, and design flexibility. However, pure GFRP beams exhibit weaknesses in terms of stiffness, stability, and local compressive strength, which compromise their bending properties. In addressing these limitations, this study introduces innovative square GFRP beams infused with gypsum-based composites (GBIGCs).

View Article and Find Full Text PDF

In recent years, there has been significant advancement in strengthening techniques for steel structures using carbon-fiber reinforced polymer (CFRP). While numerous studies have focused on CFRP strengthening of steel beams with flat webs, similar investigations on corrugated web steel beams (CWSBs) remain limited despite their increasing application in various steel structures. This study presents numerical and analytical investigations aimed at evaluating the effectiveness of CFRP strengthening for CWSBs and developing a design procedure to predict the shear buckling capacity of strengthened CWSBs.

View Article and Find Full Text PDF

Effect of GFRP Stirrup Confinement on the Bond Strength of GFRP-RC Beams.

Int J Concr Struct Mater

December 2024

Civil and Architectural Engineering Department, University of Miami, Coral Gables, FL 33146 USA.

The current provisions for development length in the ACI 440.11 code disregard the confinement effect provided by stirrups on the bond strength of longitudinal bars and require splice lengths that pose implementation challenges. Given the significant improvement in GFRP material properties, this study investigated the bond strength of sand-coated GFRP bars and proposed a new factor to include the effect of stirrup confinement on the bond-strength provisions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!