Investigating the Forming Characteristics of 316 Stainless Steel Fabricated through Cold Metal Transfer (CMT) Wire and Arc Additive Manufacturing.

Materials (Basel)

State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China.

Published: May 2024

Wire and arc additive manufacturing (WAAM), recognized for its capability to fabricate large-scale, complex parts, stands out due to its significant deposition rates and cost-effectiveness, positioning it as a forward-looking manufacturing method. In this research, we employed two welding currents to produce samples of 316 austenitic stainless steel utilizing the Cold Metal Transfer wire arc additive manufacturing process (CMT-WAAM). This study initially evaluated the maximum allowable arc travel speed (MAWFS) and the formation characteristics of the deposition bead, considering deposition currents that vary between 100 A and175 A in both CMT and CMT pulse(CMT+P) modes. Thereafter, the effect of the CMT+P mode arc on the microstructure evolution was analyzed using the EBSD technique. The findings indicate that the arc travel speed and deposition current significantly affect the deposition bead's dimensions. Specifically, an increase in travel speed or a reduction in current results in reduced bead width and height. Moreover, the employment of the CMT+P arc mode led to a reduction in the average grain size in the mid-section of the sample fabricated by CMT arc and wire additive manufacturing, from 13.426 μm to 9.429 μm. Therefore, the components of 316 stainless steel produced through the CMT+P-WAAM method are considered fit for industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122728PMC
http://dx.doi.org/10.3390/ma17102184DOI Listing

Publication Analysis

Top Keywords

additive manufacturing
16
stainless steel
12
wire arc
12
arc additive
12
travel speed
12
316 stainless
8
cold metal
8
metal transfer
8
arc
8
arc travel
8

Similar Publications

Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.

View Article and Find Full Text PDF

Nanocomposites for Multifunctional Sensors: A Comprehensive Bibliometric Exploration.

Nanomaterials (Basel)

December 2024

Technology, Instruction and Design in Engineering and Education Research Group (TiDEE.rg), Catholic University of Ávila, C/Canteros s/n, 05005 Ávila, Spain.

Multifunctional nanocomposites have become critical components in advancing sensing technologies, owing to their exceptional integration of mechanical, electrical, thermal, and optical properties. The research landscape of nanocomposites for sensing applications from 2002 to 2024 is examined in this bibliometric review. It identifies key trends, influential works, prominent research areas, and global collaboration networks.

View Article and Find Full Text PDF

Aim: The aim of this systematic review was to evaluate the effect of build orientation on the mechanical and physical properties of additively manufactured resin using digital light processing (DLP).

Background: The properties of 3D-printed materials are influenced by various factors, including the type of additive manufacturing (AM) system and build orientation. There is a scarcity of literature on the effect of build orientation on the mechanical and physical properties of additively manufactured resins using DLP technology in dentistry.

View Article and Find Full Text PDF

3D-Printable Elastomers for Real-Time Autonomous Self-Healing in Soft Devices.

ACS Mater Lett

January 2025

Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433, United States.

Photocurable self-healing elastomers are promising candidates for producing complex soft devices that can mend damage. However, the practicality of these materials is limited by reliance on external stimuli, custom synthesis, manual realignment, and multihour healing cycles. This paper introduces a tough 3D-printable hybrid acrylate/thiol-ene elastomer (prepared with commercially available precursors) that exhibits nearly instantaneous damage repair in the absence of external stimuli.

View Article and Find Full Text PDF

Goal And Aims: One challenge using wearable sensors is nonwear time. Without a nonwear (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!