Microfluidic technology provides a solution to the challenge of continuous CaCO particle synthesis. In this study, we utilized a 3D-printed microfluidic chip to synthesize CaCO micro- and nanoparticles in vaterite form. Our primary focus was on investigating a continuous one-phase synthesis method tailored for the crystallization of these particles. By employing a combination of confocal and scanning electron microscopy, along with Raman spectroscopy, we were able to thoroughly evaluate the synthesis efficiency. This evaluation included aspects such as particle size distribution, morphology, and polymorph composition. The results unveiled the existence of two distinct synthesis regimes within the 3D-printed microfluidic chips, which featured a channel cross-section of 2 mm. In the first regime, which was characterized by chaotic advection, particles with an average diameter of around 2 μm were produced, thereby displaying a broad size distribution. Conversely, the second regime, marked by diffusion mixing, led to the synthesis of submicron particles (approximately 800-900 nm in diameter) and even nanosized particles (70-80 nm). This research significantly contributes valuable insights to both the understanding and optimization of microfluidic synthesis processes, particularly in achieving the controlled production of submicron and nanoscale particles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123073 | PMC |
http://dx.doi.org/10.3390/mi15050652 | DOI Listing |
Lab Chip
January 2025
VERAXA Biotech GmbH, 69124 Heidelberg, Germany.
Microfluidic droplet sorting has emerged as a powerful technique for a broad spectrum of biomedical applications ranging from single cell analysis to high-throughput drug screening, biomarker detection and tissue engineering. However, the controlled and reliable retrieval of selected droplets for further off-chip analysis and processing is a significant challenge in droplet sorting, particularly in high-throughput applications with low expected hit rates. In this study, we present a microfluidic platform capable of sorting and dispensing individual droplets with minimal loss rates.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.
Despite advances in healthcare, bacterial pathogens remain a severe global health threat, exacerbated by rising antibiotic resistance. Lower respiratory tract infections, with their high death toll, are of particular concern. Accurately replicating host-pathogen interactions in laboratory models is crucial for understanding these diseases and evaluating new therapies.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
This study advances microfluidic probe (MFP) technology through the development of a 3D-printed Microfluidic Mixing Probe (MMP), which integrates a built-in pre-mixer network of channels and features a lined array of paired injection and aspiration apertures. By combining the concepts of hydrodynamic flow confinements (HFCs) and "Christmas-tree" concentration gradient generation, the MMP can produce multiple concentration-varying flow dipoles, ranging from 0 to 100%, within an open microfluidic environment. This innovation overcomes previous limitations of MFPs, which only produced homogeneous bioreagents, by utilizing the pre-mixer to create distinct concentration of injected biochemicals.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do, 59626, Republic of Korea.
Developing a portable yet affordable method for the discrimination of chemical substances with good sensitivity and selectivity is essential for on-site visual detection of unknown substances. Herein, we propose an optofluidic paper-based analytical device (PAD) that consists of a macromolecule-driven flow (MDF) gate and photonic crystal (PhC) coding units, enabling portable and scalable detection and discrimination of various organic chemical, mimicking the olfactory system. The MDF gate is designed for precise flow control of liquid analytes, which depends on intermolecular interactions between the polymer at the MDF gate and the liquid analytes.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
Nuclear magnetic resonance (NMR) spectroscopy is a valuable diagnostic tool limited by low sensitivity due to low nuclear spin polarization. Hyperpolarization techniques, such as dissolution dynamic nuclear polarization, significantly enhance sensitivity, enabling real-time tracking of cellular metabolism. However, traditional high-field NMR systems and bioreactor platforms pose challenges, including the need for specialized equipment and fixed sample volumes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!