Background: Recurrence in glioblastoma lacks a standardized treatment, prompting an exploration of re-irradiation's efficacy.

Methods: A comprehensive systematic review from January 2005 to May 2023 assessed the role of MRI sequences in recurrent glioblastoma re-irradiation. The search criteria, employing MeSH terms, targeted English-language, peer-reviewed articles. The inclusion criteria comprised both retrospective and prospective studies, excluding certain types and populations for specificity. The PICO methodology guided data extraction, and the statistical analysis employed Chi-squared tests via MedCalc v22.009.

Results: Out of the 355 identified studies, 81 met the criteria, involving 3280 patients across 65 retrospective and 16 prospective studies. The key findings indicate diverse treatment modalities, with linac-based photons predominating. The median age at re-irradiation was 54 years, and the median time interval between radiation courses was 15.5 months. Contrast-enhanced T1-weighted sequences were favored for target delineation, with PET-imaging used in fewer studies. Re-irradiation was generally well tolerated (median G3 adverse events: 3.5%). The clinical outcomes varied, with a median 1-year local control rate of 61% and a median overall survival of 11 months. No significant differences were noted in the G3 toxicity and clinical outcomes based on the MRI sequence preference or PET-based delineation.

Conclusions: In the setting of recurrent glioblastoma, contrast-enhanced T1-weighted sequences were preferred for target delineation, allowing clinicians to deliver a safe and effective therapeutic option; amino acid PET imaging may represent a useful device to discriminate radionecrosis from recurrent disease. Future investigations, including the ongoing GLIAA, NOA-10, ARO 2013/1 trial, will aim to refine approaches and standardize methodologies for improved outcomes in recurrent glioblastoma re-irradiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122491PMC
http://dx.doi.org/10.3390/jpm14050538DOI Listing

Publication Analysis

Top Keywords

recurrent glioblastoma
16
glioblastoma re-irradiation
8
retrospective prospective
8
prospective studies
8
contrast-enhanced t1-weighted
8
t1-weighted sequences
8
target delineation
8
clinical outcomes
8
recurrent
5
glioblastoma
5

Similar Publications

Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor originating from glial cells, characterized by high recurrence rates and poor patient prognosis. The heterogeneity and complex biology of GBM, coupled with the protective nature of the blood-brain barrier (BBB), significantly limit the efficacy of traditional therapies. The rapid development of nanoenzyme technology presents a promising therapeutic paradigm for the rational and targeted treatment of GBM.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is one of the deadliest and most heterogeneous forms of brain cancer, characterized by its resistance to conventional therapies. Within GBM, a subpopulation of slow-cycling cells, often linked to quiescence and stemness, plays a crucial role in treatment resistance and tumor recurrence. This study aimed to identify novel biomarkers associated with these slow-cycling GBM cells.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is the most prevalent primary brain tumour, with an incidence of 2 per 100,000. The standard clinical treatments do not sufficiently target cell migration and invasion, leading to recurrence after surgical resection and resistance after chemotherapy and radiotherapy. Pre-clinical studies are being conducted to construct artificial substrates that can mimic the tumour microenvironment (TME) to prevent GBM cells from migrating along their primary route through blood vessels and white matter tracts.

View Article and Find Full Text PDF

Background: Diffuse hemispheric glioma, histone 3 (H3) G34-mutant, has been newly defined in the 2021 WHO classification of central nervous system tumors. Here we sought to define the prognostic roles of clinical, neuroimaging, pathological, and molecular features of these tumors.

Methods: We retrospectively assembled a cohort of 114 patients (median age 22 years) with diffuse hemispheric glioma, H3 G34-mutant, CNS WHO grade 4 and profiled the imaging, histological and molecular landscape of their tumors.

View Article and Find Full Text PDF

Background: Despite numerous operative and non-operative treatment modalities, patients with glioblastoma (GBM) have a dismal prognosis. Identifying predictors of survival and recurrence is an essential strategy for guiding treatment decisions, and existing literature demonstrates associations between hematologic data and clinical outcomes in cancer patients. As such, we provide a novel analysis that examines associations between preoperative hematologic data and postoperative outcomes following GBM resection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!