Technological innovation has revolutionized healthcare, particularly in neurological rehabilitation, where it has been used to address chronic conditions. Smart home and building automation (SH&BA) technologies offer promising solutions for managing chronic disabilities associated with such conditions. This single group, pre-post longitudinal pilot study, part of the H2020 HosmartAI project, aims to explore the integration of smart home technologies into neurorehabilitation. Eighty subjects will be enrolled from IRCCS San Camillo Hospital (Venice, Italy) and will receive rehabilitation treatment through virtual reality (VR) and robotics devices for 15 h per day, 5 days a week for 3 weeks in the HosmartAI Room (HR), equipped with SH&BA devices measuring the environment. The study seeks to optimize patient outcomes and refine rehabilitation practices. Findings will be disseminated through peer-reviewed publications and scientific meetings, contributing to advancements in neurological rehabilitation and guiding future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122358 | PMC |
http://dx.doi.org/10.3390/jpm14050522 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.
View Article and Find Full Text PDFSmall
January 2025
Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.
Flexible wearable sensors with bimodal functionality offer substantial value for human health monitoring, as relying on a single indicator is insufficient for capturing comprehensive physiological information. However, bimodal sensors face multiple challenges in practical applications, including mutual interference between various modalities, and integration of excellent mechanical properties, interfacial adhesion, environmental adaptability and biocompatibility. Herein, the multifunctional hydrogel, synthesized through radical grafting and supramolecular self-crosslinking reactions, exhibits excellent thermal sensitivity (TCR = -1.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Electronics and Communications, Arab Academy for Science, Heliopolis, Cairo, 2033, Egypt.
Invasive breast cancer diagnosis and treatment planning require an accurate assessment of human epidermal growth factor receptor 2 (HER2) expression levels. While immunohistochemical techniques (IHC) are the gold standard for HER2 evaluation, their implementation can be resource-intensive and costly. To reduce these obstacles and expedite the procedure, we present an efficient deep-learning model that generates high-quality IHC-stained images directly from Hematoxylin and Eosin (H&E) stained images.
View Article and Find Full Text PDFACS Nano
January 2025
Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
With the potential to surpass the Shockley-Queisser (S-Q) limitation for solar energy conversion, the bulk photovoltaic (BPV) effect, which is induced by the broken inversion symmetry of the lattice, presents prospects for future light-harvesting technologies. However, the development of BPV is largely limited by the low solar spectrum conversion efficiency of existing noncentrosymmetric materials with wide band gaps. This study reports that the strain-induced reduction of inversion symmetry can enhance the second-order nonlinear susceptibility (χ) of SnPSe crystals by an order of magnitude, which contributes to an extremely high value of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!