Bacterial biofilms are hardy, adaptable colonies, evading immune recognition while triggering and sustaining inflammation. The goals for this study were to present a method for testing the immunogenicity of secreted metabolites from pathogenic biofilm and to document whether biofilm treated with a nutraceutical enzyme and botanical blend (NEBB) showed evidence of reprogrammed bacterial metabolism, potentially becoming more recognizable to the immune system. We screened immune-modulating properties of metabolites from established biofilm from (Pa), (Ss), and (Bb). Secreted metabolites significantly increased the cytokine production by human peripheral blood mononuclear cells, including Interleukin-1-beta (IL-1β), Interleukin-6 (IL-6), macrophage inflammatory protein-1-alpha (MIP-1α), tumor necrosis factor-alpha (TNF-α), interleukin-1 receptor antagonist (IL-1ra), and interleukin-10 (IL-10). Pa metabolites triggered the most robust increase in IL-1β, whereas Bb metabolites triggered the most robust increase in IL-10. NEBB-disrupted biofilm produced metabolites triggering altered immune modulation compared to metabolites from untreated biofilm. Metabolites from NEBB-disrupted biofilm triggered increased MIP-1α levels and reduced IL-10 levels, suggesting a reduced ability to suppress the recruitment of phagocytes compared to untreated biofilm. The results suggest that nutraceutical biofilm disruption offers strategies for inflammation management in chronic infectious illnesses. Further clinical studies are warranted to evaluate clinical correlations in infected human hosts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11124038 | PMC |
http://dx.doi.org/10.3390/microorganisms12050991 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!