The biological degradation of plant residues in the soil or on the soil surface is an integral part of the natural life cycle of annual plants and does not have adverse effects on the environment. Crop straw is characterized by a complex structure and exhibits stability and resistance to rapid microbial decomposition. In this study, we conducted a microcosm experiment to investigate the dynamic succession of the soil microbial community and the functional characteristics associated with lignocellulose-degrading pathways. Additionally, we aimed to identify lignocellulose-degrading microorganisms from the straw of three crop species prevalent in Northeast China: soybean ( Merr.), rice ( L.), and maize ( L.). Our findings revealed that both the type of straw and the degradation time influenced the bacterial and fungal community structure and composition. Metagenome sequencing results demonstrated that during degradation, different straw types assembled carbohydrate-active enzymes (CAZymes) and KEGG pathways in distinct manners, contributing to lignocellulose and hemicellulose degradation. Furthermore, isolation of lignocellulose-degrading microbes yielded 59 bacterial and 14 fungal strains contributing to straw degradation, with fungi generally exhibiting superior lignocellulose-degrading enzyme production compared to bacteria. Experiments were conducted to assess the potential synergistic effects of synthetic microbial communities (SynComs) comprising both fungi and bacteria. These SynComs resulted in a straw weight loss of 42% at 15 days post-inoculation, representing a 22% increase compared to conditions without any SynComs. In summary, our study provides novel ecological insights into crop straw degradation by microbes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123855 | PMC |
http://dx.doi.org/10.3390/microorganisms12050938 | DOI Listing |
Sci Total Environ
January 2025
Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Barcelona, Spain. Electronic address:
Paddy fields are a major anthropogenic source of global methane (CH) emissions, a powerful greenhouse gas (GHG). This study aimed at gaining insights of different organic and inorganic conductive materials (CMs) - biochar, fungal melanin, and magnetite - to mitigate CH emissions, and on their influence on key microbial populations, mimicking the postharvest season throughout the degradation of rice straw in microcosms under anaerobic conditions encompassing postharvest paddy rice soils from the Ebro Delta, Spain. Results showed that fungal melanin was the most effective CM, significantly reducing CH emissions by 29 %, while biochar amendment also reduced emissions by 10 %.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Shaanxi Geology and Mining Hanzhong Geological Brigade Co., Ltd., Hanzhong, 723000, China.
In this study, the adsorption of aqueous Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) on biochars at diverse synthesized temperatures was evaluated. The optimal sample BC-800 achieved superior adsorption performance of Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) at 10-50 mg L initial concentration. Due to the larger surface area (349.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Sub Campus T.T Singh, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
The current study was designed to evaluate the effect of particle size (PS) and inclusion level of wheat straw (WS) obtained from genetically improved wheat on the performance and feeding behavior of Sahiwal cows. Twelve multiparous, mid-lactating Sahiwal cows (DIM 135 ± 25, mean ± SD; 12.8 ± 1.
View Article and Find Full Text PDFNat Commun
January 2025
Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
During recent decades, changes in lifestyle have led to widespread nutritional obesity and its related complications. Remodelling adipose tissue as a therapeutic goal for obesity and its complications has attracted much attention and continues to be actively explored. The endothelium lines all blood vessels and is close to all cells, including adipocytes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Landscape Architecture, Poznań University of Life Sciences, 159 Dąbrowskiego Street, Poznań, 60-594, Poland.
As a result of human activities, surface waters worldwide are experiencing increasing levels of eutrophication, leading to more frequent occurrences of microalgae, including harmful algal blooms. We aimed to investigate the impact of decomposing camelina straw on mixed phytoplankton communities from eutrophic water bodies, comparing it to the effects of barley straw. The research was carried out in 15 aquaria (five of each type - containing no straw, camelina straw, and barley straw).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!