is well known as a plant growth-promoting rhizobacteria (PGPR) and biocontrol agent. Nevertheless, there are very few reports on the study of on tomato early blight, especially the biocontrol effects among different inoculation concentrations. In this study, an IAA-producing strain, YXDHD1-7 was isolated from the tomato rhizosphere soil, which had the strongest inhibitory effect against . Inoculation with bacterial suspensions of this strain promoted the growth of tomato seedlings effectively. Furthermore, inoculations at 10, 10, and 10 cfu/mL resulted in control efficacies of 100%, 83.15%, and 69.90%, respectively. Genome sequencing showed that it possesses 22 gene clusters associated with the synthesis of antimicrobial metabolites and genes that are involved in the production of IAA. Furthermore, it may be able to produce spermidine and volatile compounds that also enhance plant growth and defense responses. Our results suggest that strain YXDHD1-7 prevents early blight disease by promoting growth and enhancing the defense enzyme activities in tomato plants. This strain is a promising candidate for an excellent microbial inoculant that can be used to enhance tomato production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11124510PMC
http://dx.doi.org/10.3390/microorganisms12050921DOI Listing

Publication Analysis

Top Keywords

early blight
12
yxdhd1-7 prevents
8
prevents early
8
blight disease
8
disease promoting
8
promoting growth
8
growth enhancing
8
enhancing defense
8
defense enzyme
8
enzyme activities
8

Similar Publications

Bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae poses significant challenges to sustainable cultivation, necessitating eco-friendly management strategies, and this study explores the role of the phylloplane microbiome in disease suppression through metabarcoding, traditional microbiology, and antibacterial screening of microbial candidates. Here, we mapped the phylloplane microbiome of pomegranate cultivar 'Bhagwa' during bacterial blight development using metabarcoding sequencing (2443,834 reads), traditional microbiological methods (nutrient-rich and minimal media), and scanning electron microscopy.

View Article and Find Full Text PDF

A comprehensive dataset on lemon leaf disease can surely bring a lot of potentials into the development of agricultural research and the improvement of disease management strategies. This dataset was developed from 1354 raw images taken with professional agricultural specialist guidance from July to September 2024 in Charpolisha, Jamalpur, and further enhanced with augmented techniques, adding 9000 images. The augmentation process involves a set of techniques-flipping, rotation, zooming, shifting, adding noise, shearing, and brightening-to increase variety for different lemon leaf condition representations.

View Article and Find Full Text PDF

Activation of three targets by a TAL effector confers susceptibility to bacterial blight of cotton.

Nat Commun

January 2025

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.

Bacterial transcription activator-like effectors (TALEs) promote pathogenicity by activating host susceptibility (S) genes. To understand the pathogenicity and host adaptation of Xanthomonas citri pv. malvacearum (Xcm), we assemble the genome and the TALE repertoire of three recent Xcm Texas isolates.

View Article and Find Full Text PDF

A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis.

PLoS Pathog

January 2025

Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom.

Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN).

View Article and Find Full Text PDF

NtLPA1 overexpression regulates the growth of tobacco and enhances resistance to blight.

Transgenic Res

January 2025

Shaanxi Tobacco Company Baoji City Company, Baoji, 721000, Shaanxi, China.

The involvement of Loose Plant Architecture 1 (LPA1) in regulating plant growth and leaf angle has been previously demonstrated. However, the fundamental genetic background remains unidentified. To further understand the tissue expression profile of the NtLPA1 gene, an overexpression vector (pBI121-NtLPA1) was developed and employed to modify tobacco using the leaf disc method genetically.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!