The availability of new technologies for deep sequencing, including next-generation sequencing (NGS), allows for the detection of viral genome variations. The epidemiological determination of SARS-CoV-2 viral genome changes during the pandemic waves displayed the genome evolution and subsequent onset of variants over time. These variants were often associated with a different impact on viral transmission and disease severity. We investigated, in a retrospective study, the trend of SARS-CoV-2-positive samples collected from the start of the Italian pandemic (January 2020) to June 2023. In addition, viral RNAs extracted from 938 nasopharyngeal swab samples were analyzed using NGS between February 2022 and June 2023. Sequences were analyzed with bioinformatic tools to identify lineages and mutations and for phylogenetic studies. Six pandemic waves were detected. In our samples, we predominantly detected BA.2, BQ.1, BA.5.1, BA.5.2, and, more recently, XBB.1 and its subvariants. The data describe the SARS-CoV-2 genome evolution involved in viral interactions with the host and the dynamics of specific genome mutations and deletions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11124265PMC
http://dx.doi.org/10.3390/microorganisms12050846DOI Listing

Publication Analysis

Top Keywords

viral genome
12
pandemic waves
8
genome evolution
8
june 2023
8
viral
6
genome
6
surfing waves
4
waves sars-cov-2
4
sars-cov-2 analysis
4
analysis viral
4

Similar Publications

Novel High-Quality Amoeba Genomes Reveal Widespread Codon Usage Mismatch Between Giant Viruses and Their Hosts.

Genome Biol Evol

January 2025

Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria.

The need for high-quality protist genomes has prevented in-depth computational and experimental studies of giant virus-host interactions. In addition, our current knowledge of host range is highly biased due to the few hosts used to isolate novel giant viruses. This study presents 6 high-quality amoeba genomes from known and potential giant virus hosts belonging to 2 distinct eukaryotic clades: Amoebozoa and Discoba.

View Article and Find Full Text PDF

DNA exonucleases and endonucleases are key executors of the genome during many physiological processes. They generate double-stranded DNA by cleaving damaged endogenous or exogenous DNA, triggering the activation of the innate immune pathways such as cGAS-STING-IFN, and enabling the body to produce anti-viral or anti-tumor immune responses. This is of great significance for maintaining the stability of the genome and improving the therapeutic efficacy of tumors.

View Article and Find Full Text PDF

Coronaviruses utilize a positive-sense single-strand RNA, functioning simultaneously as mRNA and the genome. An RNA-dependent RNA polymerase (RdRP) plays a dual role in transcribing genes and replicating the genome, making RdRP a critical target in therapies against coronaviruses. This review explores recent advancements in understanding the coronavirus transcription machinery, discusses it within virus infection context, and incorporates kinetic considerations on RdRP activity.

View Article and Find Full Text PDF

COVID-19 has proved to be a global health crisis during the pandemic, and the emerging JN.1 variant is a potential threat. Therefore, finding alternative antivirals is of utmost priority.

View Article and Find Full Text PDF

Spontaneous base flipping helps drive Nsp15's preferences in double stranded RNA substrates.

Nat Commun

January 2025

Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.

Coronaviruses evade detection by the host immune system with the help of the endoribonuclease Nsp15, which regulates levels of viral double stranded RNA by cleaving 3' of uridine (U). While prior structural data shows that to cleave double stranded RNA, Nsp15's target U must be flipped out of the helix, it is not yet understood whether Nsp15 initiates flipping or captures spontaneously flipped bases. We address this gap by designing fluorinated double stranded RNA substrates that allow us to directly relate a U's sequence context to both its tendency to spontaneously flip and its susceptibility to cleavage by Nsp15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!