Monitoring hydrogen sulfide (HS) in living organisms is very important because HS acts as a regulator in many physiological and pathological processes. Upregulation of endogenous HS concentration has been shown to be closely related to the occurrence and development of tumors, atherosclerosis, neurodegenerative diseases and diabetes. Herin, a novel fluorescent probe with aggregation-induced emission was designed. Impressively, exhibited a high selectivity, fast response (1 min) and low detection limit (0.61 μM) for HS in PBS buffer (10 mM, pH = 7.42). Moreover, the reaction mechanism between and HS was conducted by Job's plot, HR-MS, and DFT. In particular, was successfully employed to detect HS in HeLa cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11124099PMC
http://dx.doi.org/10.3390/molecules29102386DOI Listing

Publication Analysis

Top Keywords

aggregation-induced fluorescence
4
fluorescence probe
4
probe detection
4
detection application
4
application cell
4
cell imaging
4
imaging monitoring
4
monitoring hydrogen
4
hydrogen sulfide
4
sulfide living
4

Similar Publications

This study addresses the critical issue of irreversible oxidation in hypochlorite (ClO⁻) sensing by a phenothiazine-based compound, which typically leads to the probe's degradation and loss of functionality. We introduce a novel fluorescence probe, (2-(5-(10 H-phenothiazin-10-yl)thiophen-2-yl)-1 H-benzo[d]imidazol-6-yl)(phenyl)methanone (PTH-BP), specifically designed to enhance ClO⁻ detection efficiency. PTH-BP exhibits strong aggregation-induced emission (AIE), emitting deep orange fluorescence at 620 nm with a large Stokes shift of 195 nm, and achieves an impressive detection limit of 1 nM in ACN/PBS buffer solutions.

View Article and Find Full Text PDF

Highly Selective AIEgen-Based "Turn On" Fluorescent Imaging for Inflammation Detection.

Luminescence

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.

Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site.

View Article and Find Full Text PDF

Portable and real-time detection for tetracycline antibiotics using europium-doped LDH gel intercalated graphene quantum dots.

J Hazard Mater

January 2025

Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China. Electronic address:

Tetracyclines (TCs) residues pose a significant threat to the aquatic environment and human health, therefore this study aims to develop a simple, rapid, and sensitive TCs detection method. Herein, a dual-responsive gel probe (LDH-CES@N) was designed, consisting of the intercalation of graphene quantum dots into europium-doped layered double hydroxide (LDH). In the presence of TCs, the as-prepared probe exhibited dual emission fluorescence at 504 nm and 616 nm due to the synergistic effect of aggregation-induced emission and antenna effect.

View Article and Find Full Text PDF

Numeric uptake drives nanoplastic toxicity: Size-effects uncovered by toxicokinetic-toxicodynamic (TKTD) modeling.

J Hazard Mater

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China. Electronic address:

Predicting nanoplastic bioaccumulation and toxicity using process-based models is challenging due to the difficulties in tracing them at low concentrations. This study investigates the size-dependent effects of nanoplastic exposure on Daphnia magna using a toxicokinetic-toxicodynamic (TKTD) model. Palladium-doped fluorescent nanoplastics in three sizes (30-nm, 66-nm, 170-nm) were tested at two numeric exposure concentrations.

View Article and Find Full Text PDF

Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!