Considering the escalating resistance to conventional antifungal medications, it is critical to identify novel compounds that can efficiently counteract this challenge. The purpose of this research was to elucidate the fungicidal properties of secondary metabolites derived from , with a specific focus on their efficacy against species. This study utilized a combination approach comprising laboratory simulations and experiments to discern and evaluate the biologically active constituents present in the dichloromethane extract of . The in vitro experiments demonstrated that compounds (palmatine) and (fibraurin) exhibited antifungal properties. The compounds exhibited minimum inhibitory concentrations (MICs) ranging from 15.62 to 62.5 µg/mL against sp. Moreover, compound demonstrated a minimum fungicidal concentration (MFC) of 62.5 µg/mL against and . In contrast, compound exhibited an MFC of 125 µg/mL against both species. Based on a molecular docking study, it was shown that compounds and have a binding free energy of -6.6377 and -6.7075 kcal/mol, respectively, which indicates a strong affinity and specificity for fungal enzymatic targets. This study utilized pharmacophore modeling and Density Functional Theory (DFT) simulations to better understand the interaction dynamics and structural properties crucial for antifungal activity. The findings underscore the potential of secondary metabolites derived from to act as a foundation for creating novel and highly efficient antifungal treatments, specifically targeting fungal diseases resistant to existing treatment methods. Thus, the results regarding these compounds can provide references for the next stage in antifungal drug design. Further investigation is necessary to thoroughly evaluate these natural substances' clinical feasibility and safety characteristics, which show great potential as antifungal agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123860PMC
http://dx.doi.org/10.3390/molecules29102373DOI Listing

Publication Analysis

Top Keywords

secondary metabolites
12
metabolites derived
12
potential secondary
8
efficacy species
8
study utilized
8
625 µg/ml
8
antifungal
7
compounds
5
antifungal potential
4
derived merr
4

Similar Publications

Genome Combination Improvement Strategy Promotes Efficient Spinosyn Biosynthesis in .

J Agric Food Chem

December 2024

Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China.

Spinosyns are secondary metabolites produced by known for their potent insecticidal properties and broad pesticidal spectrum. We report significant advancements in spinosyn biosynthesis achieved through a genome combination improvement strategy in . By integrating modified genome shuffling with ultraviolet mutation and multiomics analysis, we developed a high-yield spinosyn strain designated as YX2.

View Article and Find Full Text PDF

Sativene-Related Sesquiterpenoids with Phytotoxic and Plant-Promoting Activities from the Plant Pathogenic Fungus Based on a Molecular Networking Strategy.

J Agric Food Chem

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China.

Sativene-related sesquiterpenoids including -sativene analogs are a large member of fungal secondary metabolites with phytotoxic and growth-promoting effects on different plants. In this report, a series of sativene-related sesquiterpenoids with diverse carbon skeletons (-, sativene/isosativene/-sativene/cyclosativene/-isosativene ring systems) were isolated from the plant pathogenic fungus based on a molecular networking strategy. The undescribed structures were elucidated based on NMR spectra, X-ray diffraction analysis, chemical derivation, and calculated electronic circular dichroism calculations.

View Article and Find Full Text PDF

Cyanobacteria, also known as blue-green algae, are a diverse phylum of photosynthetic, Gram-negative bacteria and one of the largest microbial taxa. These organisms produce cyanotoxins, which are secondary metabolites that can have significant impacts on both human health and the environment. While toxins like Microcystins and Cylindrospermopsins are well-documented and have been extensively studied, other cyanotoxins, including those produced by and , remain underexplored.

View Article and Find Full Text PDF

Kojic acid is a secondary metabolite with strong chelating and antioxidant properties produced by and . Although antioxidants and chelators are important virulence factors for plant pathogens, the ecological role of kojic acid remains unclear. We previously observed a greater gene expression of antioxidants, especially kojic acid, by non-aflatoxigenic when co-cultured with aflatoxigenic Aflatoxin production was also reduced.

View Article and Find Full Text PDF

A Multi-Enzyme Complex That Mitigates Hepatotoxicity, Improves Egg Production and Quality, and Enhances Gut and Liver Health in Laying Hens Exposed to Trace Aflatoxin B.

Toxins (Basel)

November 2024

Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.

Aflatoxin B is a prevalent secondary hazardous metabolite generated by fungus present in feed ingredients and the surrounding environment: enzymes are currently being recognized as an efficient and promising approach to reducing the associated risks. The objective of this study was to assess the effects of varying doses of enzyme complexes on several parameters in laying hens that were exposed to aflatoxin. During an 8-week experiment, a total of 288 Yukou Jingfen No.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!