The potential energy curves (PECs) and spectroscopic constants of the ground and excited states of a LiMg molecular cation were investigated. We obtained accurate results for the fifteen lowest-lying states of the LiMg cation using the Intermediate Hamiltonian Fock Space Multireference Coupled Cluster (IH-FS-CC) method applied to the (2,0) sector. Relativistic corrections were accounted for using the third-order Douglas-Kroll method. In each instance, smooth PECs were successfully computed across the entire range of interatomic distances from equilibrium to the dissociation limit. The results are in good accordance with previous studies of this molecular cation. Notably, this study marks the first application of IH-FS-CC in investigating a mixed alkali and alkaline earth molecular cation, proving its usability in determining accurate PECs of such diatomics and their spectroscopic constants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11124300 | PMC |
http://dx.doi.org/10.3390/molecules29102364 | DOI Listing |
J Phys Chem B
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Direct air capture of CO using amino acid absorbents, such as glycine or sarcosine, is constrained by the relatively slow mass transfer of CO through the air-aqueous interface. Our recent study showed a marked improvement in CO capture by introducing CO-permeable oligo-dimethylsiloxane (ODMS-MIM) oligomers with cationic (imidazolium, MIM) headgroups. In this work, we have employed all-atom molecular dynamics simulations in combination with subensemble analysis using network theory to provide a detailed molecular picture of the behavior of CO and the glycinate anions (Gly) at the ODMS-MIM decorated air-aqueous interfaces.
View Article and Find Full Text PDFLangmuir
January 2025
Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, PL 60-965 Poznan, Poland.
Despite extensive research on the use of salts to enhance micellar growth, numerous questions remain regarding the impact of ionic exchange and molecular structure on charge neutralization. This study looks into how certain cations (Na, Ca, and Mg) affect the structure of a cocamidopropyl betaine CAPB and sodium dodecylbenzenesulfonate SDBS surfactant mixture, aiming toward applications in targeted delivery systems. The mixture consists of a zwitterionic surfactant, cocamidopropyl betaine (CAPB), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), combined in varying molar ratios at a total concentration of 200 mM.
View Article and Find Full Text PDFLangmuir
January 2025
Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
Understanding the arrangement of ionic liquids at the interface and their interactions with the surface is crucial for enhancing selectivity in heterogeneous reactions for practical applications. In this study, we investigate the nature of the adsorption and structural orientations of a sulfonyl-based ionic liquid on platinum-based mono- and bimetallic (111) surfaces employing replica exchange molecular dynamics and first-principles density functional theory calculations. More than 30 confirmations of the ionic liquid are identified on both monometallic and bimetallic surfaces.
View Article and Find Full Text PDFProtein Pept Lett
January 2025
Department of Exact Sciences, State University of Santa Cruz - UESC, Rodovia Jorge Amado Km 16, CEP: 45662-900, Ilhéus - BA, Brazil.
Introduction: Tritrpticin (TRP3) is a peptide belonging to the cathelicidin family and has a broad spectrum of antimicrobial activity. However, this class of biomolecules can be easily degraded in the body, making it necessary to use an efficient transport system. The ability to form stable nanostructures from the interaction of glycyrrhizin saponin with the pluronic polymer F127 was demonstrated, forming mixed biopolymeric micelles, highly promising as drug carriers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, Key Laboratory of Polymer Ecomaterials, 5625 Renmin Street, Changchun, , 130022, Changchun, CHINA.
Living cationic polymerization (LCP) is a classical technique for precision polymer synthesis; however, due to the high sensitivity of cationic active species towards chain-transfer/termination events, it is notoriously difficult to control polymerization under mild conditions, which inhibits its progress in advanced materials engineering. Here, we unlock a practical anion-binding catalytic strategy to address the historical dilemma in LCP. Our experimental and mechanistic studies demonstrate that commercially accessible hexafluoroisopropanol (HFIP), when used in high loading, can create higher-order HFIP aggregates to tame dormant-active species equilibrium via non-covalent anion-binding principle, in turn inducing distinctive polymerization kinetics behaviors that grant efficient chain propagation while minimizing competitive side reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!