Narrowband afterglow materials display interesting functions in high-quality anti-counterfeiting and multiplexed bioimaging. However, there is still a limited exploration of these afterglow materials, especially for those with a full width at half maxima (FWHM) around 30 nm. Here, we report the fabrication of narrowband organic/inorganic hybrid afterglow materials via energy transfer technology. Coronene (Cor) with a long phosphorescence feature and broad phosphorescence band is selected as the donor for energy transfer, and inorganic quantum dots (QDs) of CdSe/ZnS with a narrowband emission are used as acceptors. Upon doping into the organic matrix, the resultant three-component materials exhibit a narrowband afterglow with an afterglow lifetime of approximately 3.4 s and an FWHM of 31 nm. The afterglow wavelength of the afterglow materials can be controlled by the QDs. This work based on organic/inorganic hybrids provides a facile approach for developing multicolor and narrowband afterglow materials, as well as opens a new way for expanding the features of organic afterglow for multifunctional applications. It is expected to rely on narrowband afterglow emitters to solve the "spectrum congestion" problem of high-density information storage in optical anti-counterfeiting and information encryption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123977 | PMC |
http://dx.doi.org/10.3390/molecules29102343 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Sun Yat-Sen University, School of Chemistry and Chemical Engineering, 135 West Xingang Road, 510275, Guangzhou, CHINA.
Metal-organic complexes with long afterglow luminescence have attracted extensive attention due to potential applications in display, sensing and information security. However, most of the metal-organic complex long afterglow materials reported so far are limited to the use of UV light as the excitation source, and the ambiguity of the structure-activity relationship makes the development of metal-organic complexes extremely limited. Herein, a series of metal-organic complexes with ultralong emission lifetime is constructed by coordination assembly of Zn(II) with three isomers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 1219 Zhongguan West Road, 315201, Ningbo, CHINA.
Many marine organisms feature sensitive sensory-perceptual systems to sense the surrounding environment and respond to disturbance with intense bioluminescence. However, it remains a great challenge to develop artificial materials that can sense external disturbance and simultaneously activate intense luminescence, although such materials are attractive for visual sensing and intelligent displays. Herein, we present a new class of bioinspired smart gels constructed by integrating hydrophilic polymeric networks, metastable supersaturated salt and fluorophores containing heterogenic atoms.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China.
Transparent wood with high transmittance and versatility has attracted great attention as an energy-saving building material. Many studies have focused on luminescent transparent wood, while the research on organic afterglow transparent wood is an interesting combination. Here, we use luminescent difluoroboron β-diketonate (BFbdk) compounds, methyl methacrylate (MMA), delignified wood, and initiators to prepare room-temperature phosphorescent transparent wood by thermal initiation polymerization.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China.
Time-dependent afterglow colored (TDAC) behavior differs from static afterglow by involving wavelength changes, enabling low-cost, high-level encryption and anti-counterfeiting. However, the existing carbon dot (CD)-based TDAC materials lack a clear mechanistic explanation and controllable wavelength changes, significantly hindering the progress of practical applications in this field. In this study, we synthesized CDs composites with customizable tunable TDAC wavelengths across the visible region.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
High-temperature phosphorescence (HTP) materials have attracted considerable attention owing to their expanded application prospects, whereas they still suffer from severe deactivation in polar media, limiting their reliability and utility. Here, we present an efficient multivalent assembly strategy to achieve high-temperature liquid-phase phosphorescence (HTLP). The supramolecular assembly of multivalent modules leads to extremely robust hydrogen-bonding networks, which firmly immobilize the organic phosphors and protect triplet excitons from annihilation in high-temperature polar media, resulting in excellent HTLP emission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!