The impact of ligands on the palladium-catalyzed 1,2-diarylation reaction course is presented. The application of Pd-dmpzc as a catalyst provides an efficient, chemoselective and sustainable protocol for the synthesis of valuable 1,2-diphenylethyl acetates. The reaction is conducted in water under mild conditions. Reaction products can be easily separated from the reaction mixture and catalyst by simple extraction. What is more, the rational choice of catalyst significantly reduces the leaching of the metal into the product and its contamination (0.1 ppm). Efficient phase separation and ultralow Pd leaching enable the reuse of the water medium containing the Pd-dmpzc catalyst several times without a significant loss of activity and with even higher selectivity (from 95% to 100% in the third cycle). The recyclability of both the catalyst and the reaction medium together with high chemoselectivity and low palladium leaching reduces the amount of waste and the cost of the process, exhibiting an example of a sustainable and green methodology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123883 | PMC |
http://dx.doi.org/10.3390/molecules29102268 | DOI Listing |
Molecules
May 2024
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
The impact of ligands on the palladium-catalyzed 1,2-diarylation reaction course is presented. The application of Pd-dmpzc as a catalyst provides an efficient, chemoselective and sustainable protocol for the synthesis of valuable 1,2-diphenylethyl acetates. The reaction is conducted in water under mild conditions.
View Article and Find Full Text PDFInorg Chem
June 2016
School of Pharmacy, Chemistry Section, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy.
The five metal azolate/carboxylate (MAC) compounds [Cd(dmpzc)(DMF)(H2O)] (Cd-dmpzc), [Pd(H2dmpzc)2Cl2] (Pd-dmpzc), [Cu(Hdmpzc)2] (Cu-dmpzc), [Zn4O(dmpzc)3]·Solv (Zn-dmpzc·S), and [Co4O(dmpzc)3]·Solv (Co-dmpzc·S) were isolated by coupling 3,5-dimethyl-1H-pyrazol-4-carboxylic acid (H2dmpzc) to cadmium(II), palladium(II), copper(II), zinc(II), and cobalt(II) salts. While Cd-dmpzc and Pd-dmpzc had never been prepared in the past, for Cu-dmpzc, Zn-dmpzc·S, and Co-dmpzc·S we optimized alternative synthetic paths that, in the case of the copper(II) and cobalt(II) derivatives, are faster and grant higher yields than the previously reported ones. The crystal structure details were determined ab initio (Cd-dmpzc and Pd-dmpzc) or refined (Cu-dmpzc, Zn-dmpzc·S, and Co-dmpzc·S) by means of powder X-ray diffraction (PXRD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!