Antisense Oligonucleotides for Rapid Translation of Gene Therapy in Glioblastoma.

Cancers (Basel)

Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.

Published: May 2024

Purpose: The limited efficacy of current treatments for malignant brain tumors necessitates novel therapeutic strategies. This study aimed to assess the potential of antisense oligonucleotides (ASOs) as adjuvant therapy for high-grade gliomas, focusing on their CNS penetration and clinical translation prospects.

Methods: A comprehensive review of the existing literature was conducted to evaluate the implications of ASOs in neuro-oncology. Studies that investigated ASO therapy's efficacy, CNS penetration, and safety profile were analyzed to assess its potential as a therapeutic intervention for high-grade gliomas.

Results: ASOs present a promising avenue for enhancing targeted gene therapies in malignant gliomas. Their potent CNS penetration, in vivo durability, and efficient transduction offer advantages over conventional treatments. Preliminary in vivo and in vitro studies suggest ASOs as a viable adjuvant therapy for high-grade gliomas, warranting further exploration in clinical trials.

Conclusions: ASOs hold significant promise as adjuvant therapy for high-grade gliomas, offering improved CNS penetration and durability compared with existing treatments. While preliminary studies are encouraging, additional research is needed to establish the safety and efficacy of ASO therapy in clinical settings. Further investigation and clinical trials are warranted to validate ASOs as a transformative approach in neuro-oncology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119631PMC
http://dx.doi.org/10.3390/cancers16101944DOI Listing

Publication Analysis

Top Keywords

cns penetration
16
adjuvant therapy
12
therapy high-grade
12
high-grade gliomas
12
antisense oligonucleotides
8
assess potential
8
treatments preliminary
8
asos
6
therapy
5
oligonucleotides rapid
4

Similar Publications

Ferritin nanocarriers, which can penetrate the blood-brain barrier (BBB), have gained significant research interest for the diagnosis and treatment of central nervous system (CNS) diseases, including gliomas, Alzheimer's disease, and brain metastases. In recent years, ferritin has been proved as a candidate to cross the BBB using receptor-mediated transcytosis (RMT) mechanism through transferrin receptor 1 (TfR1) which is overexpressed in the cells of the BBB. Various types of cargo molecules, including therapeutics, imaging agents, nucleic acids, and metal nanoparticles, have been incorporated into ferritin nanocages for the diagnosis and treatment of CNS diseases.

View Article and Find Full Text PDF

Foreign Contaminants Target Brain Health.

CNS Neurol Disord Drug Targets

January 2025

Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi, India-110017.

Neurodisease, caused by undesired substances, can lead to mental health conditions like depression, anxiety and neurocognitive problems like dementia. These substances can be referred to as contaminants that can cause damage, corruption, and infection or reduce brain functionality. Contaminants, whether conceptual or physical, have the ability to disrupt many processes.

View Article and Find Full Text PDF

Bevacizumab is widely used in various clinical indications, but investigations into its optimal dosage for treating CNS metastases remain limited. The BEEP regimen, comprising bevacizumab, etoposide, and cisplatin, has recently demonstrated promising clinical outcomes for patients with breast cancer brain metastasis (BCBM) or leptomeningeal metastasis (LM). This study aimed to evaluate the exposure-response relationship of bevacizumab in BCBM patients and to explore the improved CNS penetration of chemotherapy by bevacizumab with LM patients.

View Article and Find Full Text PDF

Discovery of Brain-Penetrative Negative Allosteric Modulators of NMDA Receptors Using FEP-Guided Structure Optimization and Membrane Permeability Prediction.

J Chem Inf Model

January 2025

Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China.

-Methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors in the central nervous system (CNS), have garnered attention for their role in brain disorders. Specifically, GluN2A-containing NMDA receptors have emerged as a potential therapeutic target for the treatment of depressive disorders and epilepsy. However, the development of GluN2A-containing NMDA receptor-selective antagonists, represented by -(4-(2-benzoylhydrazine-1-carbonyl)benzyl)-3-chloro-4-fluorobenzenesulfonamide (TCN-201) and its derivatives, faces a significant challenge due to their limited ability to penetrate the blood-brain barrier (BBB), hampering their characterization and further advancement.

View Article and Find Full Text PDF

An engineered adeno-associated virus mediates efficient blood-brain barrier penetration with enhanced neurotropism and reduced hepatotropism.

J Control Release

January 2025

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074 Wuhan, PR China; Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, PR China; Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, PR China. Electronic address:

The blood-brain barrier (BBB) is a formidable barrier that restricts the entry of substances into the brain, complicating the study of brain function and the treatment of neurological conditions. Traditional methods of delivering genes from the periphery to the central nervous system (CNS) using adeno-associated viruses (AAVs) often require high doses, which can trigger immune responses and hepatotoxicity. Here, we developed a new AAV variant named AAVhu.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!