Background: Colorectal cancer (CRC) significantly contributes to cancer-related mortality, necessitating the exploration of prognostic factors beyond TNM staging. This study investigates the composition of the gut microbiome and microbial DNA fragments in stage II/III CRC.
Methods: A cohort of 142 patients with stage II/III CRC and 91 healthy controls underwent comprehensive microbiome analysis. Fecal samples were collected for rRNA sequencing, and blood samples were tested for the presence of microbial DNA fragments. De novo clustering analysis categorized individuals based on their microbial profiles. Alpha and beta diversity metrics were calculated, and taxonomic profiling was conducted.
Results: Patients with CRC exhibited distinct microbial composition compared to controls. Beta diversity analysis confirmed CRC-specific microbial profiles. Taxonomic profiling revealed unique taxonomies in the patient cohort. De novo clustering separated individuals into distinct groups, with specific microbial DNA fragment detection associated with certain patient clusters.
Conclusions: The gut microbiota can differentiate patients with CRC from healthy individuals. Detecting microbial DNA fragments in the bloodstream may be linked to CRC prognosis. These findings suggest that the gut microbiome could serve as a prognostic factor in stage II/III CRC. Identifying specific microbial markers associated with CRC prognosis has potential clinical implications, including personalized treatment strategies and reduced healthcare costs. Further research is needed to validate these findings and uncover underlying mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119035 | PMC |
http://dx.doi.org/10.3390/cancers16101923 | DOI Listing |
Talanta
January 2025
Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, CEP 84030-900, PR, Brazil. Electronic address:
The challenge of increasing food production while maintaining environmental sustainability can be addressed by using biofertilizers such as Azospirillum, which can enhance plant growth and colonize more than 100 plant species. The success of this biotechnology depends on the amount of plant growth-promoting bacteria associated with the plant during crop development. However, monitoring bacterial population dynamics after inoculation requires time-consuming, laborious, and costly procedures.
View Article and Find Full Text PDFInt Endod J
January 2025
Department of Endodontics, Centre of Oral Clinical and Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, Guy's Dental Hospital, King's College London, London, UK.
Aims: Apical Periodontitis (AP) involves complex interactions between the root canal microbiome and the host immune response, with potential risk of local and systemic inflammatory burden, however there is no evidence available regarding correlation between microbiome and inflammatory marker levels. This study aims to identify the microbiome of saliva, intracanal and blood samples in AP subjects and investigate the correlation between intracanal and blood microbiomes with serum inflammatory biomarker levels, and salivary microbiomes with salivary inflammatory biomarker levels.
Methodology: Saliva, Intracanal and blood samples were collected from AP patients undergoing root canal retreatment.
Probiotics Antimicrob Proteins
January 2025
Faculty of Biotechnologies (BioTech), ITMO University, 9 Lomonosova Street, 191002, Saint Petersburg, Russia.
Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.
View Article and Find Full Text PDFNat Microbiol
January 2025
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
As freshwater lakes undergo rapid anthropogenic change, long-term studies reveal key microbial dynamics, evolutionary shifts and biogeochemical interactions, yet the vital role of viruses remains overlooked. Here, leveraging a 20 year time series from Lake Mendota, WI, USA, we characterized 1.3 million viral genomes across time, seasonality and environmental factors.
View Article and Find Full Text PDFMicrob Genom
January 2025
Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
A diverse array of micro-organisms can be found on food, including those that are pathogenic or resistant to antimicrobial drugs. Metagenomics involves extracting and sequencing the DNA of all micro-organisms on a sample, and here, we used a combination of culture and culture-independent approaches to investigate the microbial ecology of food to assess the potential application of metagenomics for the microbial surveillance of food. We cultured common foodborne pathogens and other organisms including , spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!