Determining the tumor origin in humans is vital in clinical applications of molecular diagnostics. Metastatic cancer is usually a very aggressive disease with limited diagnostic procedures, despite the fact that many protocols have been evaluated for their effectiveness in prognostication. Research has shown that dysregulation in miRNAs (a class of non-coding, regulatory RNAs) is remarkably involved in oncogenic conditions. This research paper aims to develop a machine learning model that processes an array of miRNAs in 1097 metastatic tissue samples from patients who suffered from various stages of breast cancer. The suggested machine learning model is fed with miRNA quantitative read count data taken from The Cancer Genome Atlas Data Repository. Two main feature-selection techniques have been used, mainly Neighborhood Component Analysis and Minimum Redundancy Maximum Relevance, to identify the most discriminant and relevant miRNAs for their up-regulated and down-regulated states. These miRNAs are then validated as biological identifiers for each of the four cancer stages in breast tumors. Both machine learning algorithms yield performance scores that are significantly higher than the traditional fold-change approach, particularly in earlier stages of cancer, with Neighborhood Component Analysis and Minimum Redundancy Maximum Relevance achieving accuracy scores of up to 0.983 and 0.931, respectively, compared to 0.920 for the FC method. This study underscores the potential of advanced feature-selection methods in enhancing the accuracy of cancer stage identification, paving the way for improved diagnostic and therapeutic strategies in oncology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11120052PMC
http://dx.doi.org/10.3390/cancers16101864DOI Listing

Publication Analysis

Top Keywords

machine learning
16
stages breast
12
breast cancer
8
learning model
8
neighborhood component
8
component analysis
8
analysis minimum
8
minimum redundancy
8
redundancy maximum
8
maximum relevance
8

Similar Publications

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring.

Anal Chem

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.

Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.

View Article and Find Full Text PDF

Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.

View Article and Find Full Text PDF

Purpose: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evaluated whether an auxiliary data set could improve prediction performance.

View Article and Find Full Text PDF

Purpose: Establishing an accurate prognosis remains challenging in older patients with cancer because of the population's heterogeneity and the current predictive models' reduced ability to capture the complex interactions between oncologic and geriatric predictors. We aim to develop and externally validate a new predictive score (the Geriatric Cancer Scoring System [GCSS]) to refine individualized prognosis for older patients with cancer during the first year after a geriatric assessment (GA).

Materials And Methods: Data were collected from two French prospective multicenter cohorts of patients with cancer 70 years and older, referred for GA: ELCAPA (training set January 2007-March 2016) and ONCODAGE (validation set August 2008-March 2010).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!