PolyI:C Maternal Immune Activation on E9.5 Causes the Deregulation of Microglia and the Complement System in Mice, Leading to Decreased Synaptic Spine Density.

Int J Mol Sci

Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada.

Published: May 2024

Maternal immune activation (MIA) is a risk factor for multiple neurodevelopmental disorders; however, animal models developed to explore MIA mechanisms are sensitive to experimental factors, which has led to complexity in previous reports of the MIA phenotype. We sought to characterize an MIA protocol throughout development to understand how prenatal immune insult alters the trajectory of important neurodevelopmental processes, including the microglial regulation of synaptic spines and complement signaling. We used polyinosinic:polycytidylic acid (polyI:C) to induce MIA on gestational day 9.5 in CD-1 mice, and measured their synaptic spine density, microglial synaptic pruning, and complement protein expression. We found reduced dendritic spine density in the somatosensory cortex starting at 3-weeks-of-age with requisite increases in microglial synaptic pruning and phagocytosis, suggesting spine density loss was caused by increased microglial synaptic pruning. Additionally, we showed dysregulation in complement protein expression persisting into adulthood. Our findings highlight disruptions in the prenatal environment leading to alterations in multiple dynamic processes through to postnatal development. This could potentially suggest developmental time points during which synaptic processes could be measured as risk factors or targeted with therapeutics for neurodevelopmental disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11121703PMC
http://dx.doi.org/10.3390/ijms25105480DOI Listing

Publication Analysis

Top Keywords

spine density
16
microglial synaptic
12
synaptic pruning
12
maternal immune
8
immune activation
8
synaptic spine
8
neurodevelopmental disorders
8
complement protein
8
protein expression
8
synaptic
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!