Yeast two-hybrid approaches, which are based on fusion proteins that must co-localise to the nucleus to reconstitute the transcriptional activity of GAL4, have greatly contributed to our understanding of the nitrogen interaction network of cyanobacteria, the main hubs of which are the trimeric PII and the monomeric PipX regulators. The bacterial two-hybrid system, based on the reconstitution in the cytoplasm of the adenylate cyclase of , should provide a relatively faster and presumably more physiological assay for cyanobacterial proteins than the yeast system. Here, we used the bacterial two-hybrid system to gain additional insights into the cyanobacterial PipX interaction network while simultaneously assessing the advantages and limitations of the two most popular two-hybrid systems. A comprehensive mutational analysis of PipX and bacterial two-hybrid assays were performed to compare the outcomes between yeast and bacterial systems. We detected interactions that were previously recorded in the yeast two-hybrid system as negative, as well as a "false positive", the self-interaction of PipX, which is rather an indirect interaction that is dependent on PII homologues from the host, a result confirmed by Western blot analysis with relevant PipX variants. This is, to our knowledge, the first report of the molecular basis of a false positive in the bacterial two-hybrid system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11121479PMC
http://dx.doi.org/10.3390/ijms25105429DOI Listing

Publication Analysis

Top Keywords

bacterial two-hybrid
16
two-hybrid system
16
advantages limitations
8
two-hybrid
8
two-hybrid systems
8
yeast two-hybrid
8
interaction network
8
pipx
5
bacterial
5
system
5

Similar Publications

Introduction: are the most common cause of food poisoning, which manifests itself in diarrhoea of varying severity. Additionally, because of the increasing number of people with immune deficiencies, more frequent serious complications of infections are being observed. The main source of infection is the consumption of contaminated poultry meat, which is a consequence of the insufficiency of current hygiene and biosecurity to control or eliminate it from the poultry food chain.

View Article and Find Full Text PDF

YafN-YafO toxin-antitoxin system contributes to stress resistance and virulence of avian pathogenic Escherichia coli.

Poult Sci

January 2025

Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, PR China. Electronic address:

Avian pathogenic Escherichia coli (APEC) is a major threat to the poultry industry, causing bloodstream and extraintestinal infections. Type II toxin-antitoxin (TA) systems are known to aid bacterial pathogens in adapting to stress, promoting persister cell formation, and enhancing virulence. While type II TA systems have been extensively studied in many pathogens, APEC-derived TAs have received limited attention.

View Article and Find Full Text PDF

Kingella kingae, an emerging pediatric pathogen, secretes the pore-forming toxin RtxA, which has been implicated in the development of various invasive infections. RtxA is synthesized as a protoxin (proRtxA), which gains its biological activity by fatty acylation of two lysine residues (K558 and K689) by the acyltransferase RtxC. The low acylation level of RtxA at K558 (2-23 %) suggests that the complete acylation at K689 is crucial for toxin activity.

View Article and Find Full Text PDF

Arginine kinase McsB and ClpC complex impairs the transition to biofilm formation in Bacillus subtilis.

Microbiol Res

November 2024

Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China. Electronic address:

Robust biofilm formation on host niches facilitates beneficial Bacillus to promote plant growth and inhibit plant pathogens. Arginine kinase McsB is involved in bacterial development and stress reaction by phosphorylating proteins for degradation through a ClpC/ClpP protease. Conversely, cognate arginine phosphatase YwlE counteracts the process.

View Article and Find Full Text PDF

PhoU homologs from dimerization and protein interactions.

Microbiol Spectr

January 2025

School of Science + Mathematics, Emporia State University, Emporia, Kansas, USA.

PhoU proteins are negative regulators of the phosphate response, regulate virulence, and contribute to antibiotic resistance. has multiple genes encoding PhoU homologs that regulate persister formation and potentially virulence, but the molecular mechanisms of this regulation are not fully understood. We used a bacterial adenylate cyclase two-hybrid system to assess interactions between PhoU homologs and other proteins known to interact with PhoU from PhoU (also referred to as PhoU1) interacted with PhoU itself; PitR (also referred to as PhoU2) interacted with PitR itself.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!