An original plasma chemical process initiated by microwave discharge in a mixture of metal and dielectric powders was applied to prepare specific materials, which consisted of microsized spherical particles of aluminum oxide covered with silver nanoparticles. The prepared materials are highly uniform in shape, size distribution, and composition. Their cytotoxicity was investigated using the human cell lines MCF7, HEK293T, A549, and VA-13 and the bacterial strains JW5503 (ΔtolC) and K12. Their cytotoxicity was found not to exceed the cytotoxicity of the starting materials. Thus, the prepared materials can be considered highly promising for catalysis and biotechnology applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11121626 | PMC |
http://dx.doi.org/10.3390/ijms25105326 | DOI Listing |
PLoS One
January 2025
Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
Cotton textiles with persistent antibacterial qualities are crucial in halting the spread of bacteria and other infections. However, fugitive bacteria and drug-resistant pathogens have rendered tremendous challenges in the development of cotton fabrics with long-lasting antibacterial efficacy. The work aimed to innovatively propose a functional cotton fabric integrating intelligent bacteria-capturing and dual antibacterial properties for efficacious personal health management.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Plastics and Polymer Engineering, School of Engineering, Plastindia International University, Vapi-396193, Gujarat, India.
This study is to produce biogenic silver nanoparticles (AgNPs) by utilizing aqueous extracts derived from Turnera Sublata (TS) leaves under visible light. Subsequently, these nanoparticles are coated with eosin-yellow (EY) to enhance sensitivity and selectivity in L-3,4-dihydroxyphenylalanine (L-dopa) detection. This method encompasses the deposition of metal onto the Ag NPs, resulting in the formation of EY-AgNPs.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
In recent years, the increasing prevalence of viral infections such as dengue (DENV) and chikungunya (CHIKV) has emphasized the vital need for new diagnostic techniques that are not only quick and inexpensive but also suitable for point-of-care and home usage. Existing diagnostic procedures, while useful, sometimes have limits in terms of speed, mobility, and price, particularly in resource-constrained environments and during epidemics. To address these issues, this study proposes a novel technique that combines 3D printing technology with electrochemical biosensors to provide a highly sensitive, user-friendly, and customizable diagnostic platform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!